Free Access
Issue
ESAIM: M2AN
Volume 22, Number 1, 1988
Page(s) 93 - 118
DOI https://doi.org/10.1051/m2an/1988220100931
Published online 31 January 2017
  1. H. BRÉZIS and T. GALLOUET, « Nonlinear Schroedinger evolution equation», Nonlinear Analysis Theory Methods and Applications, Vol.4, 1980, p. 677. [MR: 582536] [Zbl: 0451.35023] [Google Scholar]
  2. C. FOIAS,O. MANLEY and R. TEMAM, « Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents», C.R. Ac. Sc.Paris, 305, Série I, 1987; pp. 497-500. [MR: 916319] [Zbl: 0624.76072] [Google Scholar]
  3. C. FOIAS,O. MANLEY and R. TEMAM, to appear. [MR: 1205478] [Google Scholar]
  4. C. FOIAS,O. MANLEY, R. TEMAM and Y. TREVE, « Asymptotic analysis of the Navier-Stokes equations», Physica 6D, 1983, pp. 157-188. [MR: 732571] [Zbl: 0584.35007] [Google Scholar]
  5. C. FOIAS,B. NICOLAENKO, G. SELL and R. TEMAM, « Variétés inertielles pour l'équation de Kuramoto-Sivashinsky»,C. R. Ac. Sc. Paris, 301, Série I, 1985pp. 285-288 and « Inertial Manifolds for the Kuramoto-Sivashinsky équations and an estimate of their lowest dimension», J. Math. Pure AppL, 1988. [MR: 803219] [Zbl: 0591.35063] [Google Scholar]
  6. C. FOIAS and G. PRODI, « Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2», Rend. Sem. Mat. Padova, Vol. 39, 1967, pp. 1-34. [EuDML: 107242] [MR: 223716] [Zbl: 0176.54103] [Google Scholar]
  7. C. FOIAS and R. TEMAM, « Some analytic and geometrie properties of the solutions of the Navier-Stokes equations», J. Math. Pure Appl, Vol.58, 1979, pp. 339-368. [MR: 544257] [Zbl: 0454.35073] [Google Scholar]
  8. C. FOIAS and R. TEMAM, Finite parameter approximative structures of actual flows», in Nonlinear Problems : Present and Future, A. R. Bishop, D. K. Campbell, B. Nicolaenko (eds.), North Holland, Amsterdam, 1982. [MR: 675639] [Zbl: 0493.76026] [Google Scholar]
  9. A. N. KOLMOGOROV, C. R. Ac. Sc URSS, Vol.30, 1941, p. 301; Vol. 31, 1941, p. 538; Vol. 32, 1941, p. 16. [Google Scholar]
  10. R. H. KRAICHNAN, « Inertial ranges in two dimensional turbulence», Phys. Fluids, Vol. 10, 1967, pp. 1417-1423. [Google Scholar]
  11. G. MÉTIVIER, « Valeurs propres d'opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces», J. Math. Pure Appl., Vol. 57, 1978, pp. 133-156. [MR: 505900] [Zbl: 0328.35029] [Google Scholar]
  12. R. TEMAM, Navier-Stokes Equations, 3rd Revised Ed., North Holland, Amsterdam, 1984. [Zbl: 0568.35002] [Google Scholar]
  13. R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, NSF/CBMS Regional Conferences Series in Appl. Math., SIAM, Philadelphia, 1983. [MR: 764933] [Zbl: 0833.35110] [Google Scholar]
  14. R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]
  15. E. TITI, Article in preparation. [Google Scholar]
  16. J. H. WELLS and L. R. WILLIAMS, Imbeddings and Extensions in Analysis, Springer-Verlag, Heidelberg, New York [Zbl: 0324.46034] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you