Free Access
Volume 22, Number 1, 1988
Page(s) 119 - 158
Published online 31 January 2017
  1. G. ALESSANDRINI, An identification problem for an elliptic équation in two variables, Ann. Mat. Pura Appl. Vol. 145, 1986, pp. 265-296. [MR: 886713] [Zbl: 0662.35118] [Google Scholar]
  2. G. LESSANDRINI, On the identification of the leading coefficient of an elliptic equation, Bolletino U.M.I., Analisi Funzionale e Applicazioni, Serie VI, Vol. IV-C, 1985, pp. 87-111. [MR: 805207] [Zbl: 0598.35129] [Google Scholar]
  3. H. T. BANKS and K. KUNISCH, Parameter estimation techniques for nonlinear distributed parameter Systems, Nonlinear phenomena in mathematical sciences, V. Lakshmikantham, ed., Academic Press, 1982, pp. 57-67. [Zbl: 0511.93022] [Google Scholar]
  4. J. BEAR, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972. [Zbl: 1191.76001] [Google Scholar]
  5. G. CHAVENT, Identification of distributed parameter Systems : about the output least square method, its implementation, and identifiability, Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, R. Iserman, ed., Pergamon Press, 1980, Vol. 1, pp. 85-97. [Zbl: 0478.93059] [Google Scholar]
  6. C. CHICONE and J. GERLACH, A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal. Vol. 18, 1987, pp. 1378-1384. [MR: 902338] [Zbl: 0644.35092] [Google Scholar]
  7. P. G. CIARLET, Numerical Analysis of the Finite Element Method, University of Montréal Press, 1975. [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
  8. H. BEIRÃO DA VEIGA, On a stationary transport equation, Ann. Univ. Ferrara Sez. VII, Sci. Mat., Vol. 32, 1986, pp. 79-91. [MR: 901589] [Zbl: 0641.35006] [Google Scholar]
  9. R. S. FALK, Error estimates for the numerical identification of a variable coefficient, Math. Comp. Vol. 40, 1983, pp. 537-546. [MR: 689469] [Zbl: 0551.65083] [Google Scholar]
  10. E. O. FRIND and G. F. PINDER, Galerkin solution of teh inverse problem for aquifer transmissivity, Water Resour. Res., Vol. 9, 1973, pp. 1397-1410. [Google Scholar]
  11. K. H. HOFFMAN and J. SPREKELS, On the identification of coefficiens of elliptic problems by asymptotic regulariaztion, Num. Finct. Anal. Optimiz. Vol. 7, 1984-85, pp. 157-177. [MR: 767380] [Zbl: 0576.65121] [Google Scholar]
  12. R. V. KOHN and G. STRANG, Optimal design and relaxation of variational problems, Com. Pure Appl. Math. Vol. 39, 1986, pp. 113-137, 139-182, 353-377. [Zbl: 0609.49008] [Google Scholar]
  13. R. V. KOHN and M. VOGELIUS, Relaxation of a variational method for impedance computed tomography, Vol. 40, 1987, pp. 745-777. [MR: 910952] [Zbl: 0659.49009] [Google Scholar]
  14. C. KRAVARIS and J. H. SEINFELD, Identification of parameters in distributed parameter systems by regularization, SIAM J. Contr. Optimiz. Vol. 23, 1985, pp. 217-241. [MR: 777457] [Zbl: 0563.93018] [Google Scholar]
  15. K. KUNISCH, Inherent Identifiability : rate of convergence for parameter estimation problems, to appear. [Google Scholar]
  16. K. KUNISCH and L. W. WHITE, Identification under approximation for an elliptic boundary value problem, to appear. [Google Scholar]
  17. F. MURAT, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann., Math. Pura et Appl., Vol. 62, 1977, pp. 49-68. [MR: 438205] [Zbl: 0349.49005] [Google Scholar]
  18. F. NATTERER, The finite element method for ill-posed problems, R.A.I.R.O. Numerical Analysis, Vol. 11, 1977, pp. 271-278. [EuDML: 193302] [MR: 519587] [Zbl: 0369.65012] [Google Scholar]
  19. M. P. POLIS and R. E. GOODSON, Parameter identification in distributed systems : a synthesizing overview, Proceedigns of the IEEE, Vol. 64, 1976, pp. 45-61. [MR: 408888] [Zbl: 0313.93012] [Google Scholar]
  20. G. R. RICHTER, An iverse problem for the steady state diffusion equation, SIAM J. Appl. Math., Vol. 41, 1981, pp. 210-221. [MR: 628945] [Zbl: 0501.35075] [Google Scholar]
  21. G. R. RICHTER, Numerical identification of a spatially varying diffusion coefficient, Math. Comp. Vol. 36, 1981, pp. 375-386. [MR: 606502] [Zbl: 0474.65065] [Google Scholar]
  22. R. SCOTT, Interpolated boundary conditions in the finite element method, SIAM J. Numer, Anal., Vol. 12, 1975, pp. 404-427. [MR: 386304] [Zbl: 0357.65082] [Google Scholar]
  23. A. WEXLER and C. J. MANDEL, An impedance computed tomography algorithm and system for ground water and hazardous waste imaging, presented at the Second Annual Canadian/American Conference in Hydrogeology ; Hazardous Wastes in Ground Water : A Soluble Dilemma, June 25-29, 1985, Banff, Alberta, Canada. [Google Scholar]
  24. A. WEXLER,B. FRY and M. R. NEUMAN, Impedance-computed tomography algorithm and system, Applied Optics, Vol. 24, 1985, pp. 3985-3992. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you