Free Access
Issue
ESAIM: M2AN
Volume 22, Number 2, 1988
Page(s) 311 - 342
DOI https://doi.org/10.1051/m2an/1988220203111
Published online 31 January 2017
  1. R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flows, New York (1967). [MR: 240836] [Zbl: 0171.44404]
  2. R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). [MR: 450957] [Zbl: 0314.46030]
  3. S. AGMON,A. DOUGLIS and L. NIRENBERG; Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math XII (1959), 623-727. [MR: 125307] [Zbl: 0093.10401]
  4. S. AGMON,A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math XVII (1964), 35-92. [MR: 162050] [Zbl: 0123.28706]
  5. M. BERNADOU,P. G. CIARLET and J. HU, On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, Journal of Elasticity 14 (1984), 425-440. [MR: 770299] [Zbl: 0551.73019]
  6. D. R. J. CHILLINGWORTH,J. E. MARSDEN and Y. H. WAN, Symmetry and Bifurcation in three-dimensional elasticity, part I, Arch. Rat. Mech. An. 80 pp. 296-322 (1982). [MR: 677564] [Zbl: 0509.73018]
  7. P. G. CIARLET, Élasticité Tridimensionnelle, Masson, Paris (1986). [MR: 819990] [Zbl: 0572.73027]
  8. P. G. CIARLET, Topics in Mathematical Elasticity, Vol. 1 : Three-Dimensional Elasticity, North-Holland, Amsterdam (1987). [MR: 936420] [Zbl: 0648.73014]
  9. M. CROUZEIX and A. MIGNOT, Analyse Numérique des Équations Différentielles, Masson, Paris (1984). [MR: 762089] [Zbl: 0635.65079]
  10. G. GEYMONAT, Sui problemi ai limiti per i systemi lineari ellitici, Ann. Mat. Pura Appl. LXIX (1965), 207-284. [MR: 196262] [Zbl: 0152.11102]
  11. M. E. GURTIN, Introduction to Continuum Mechanics, Academic Press, New York (1981). [MR: 636255] [Zbl: 0559.73001]
  12. S. LANG, Introduction to differential manifolds, John Wiley and Sons, Inc. New York (1962). [MR: 155257] [Zbl: 0103.15101]
  13. H. LE DRET, Quelques Problèmes d'Existence en Élasticité Non Linéaire, Thesis, Université Pierre et Marie Curie Paris (1982).
  14. H. LE DRET, Constitutive laws and Existence Questions in Incompressible Nonlinear Elasticity, to appear in Journal of Elasticity (1983). [MR: 817376] [Zbl: 0648.73013]
  15. P. LE TALLEC and J. T. ODEN, Existence and Characterization of Hydrostatic Pressure in finite deformations of Incompressible Elastic Bodies, Journal of Elasticity, 11, 341-358 (1981). [MR: 637620] [Zbl: 0483.73035]
  16. P. LE TALLEC, Existence and approximation results for nonlinear mixed problems : application to incompressible finite elasticity, Numer. Math. 38, 365-382 (1982). [EuDML: 132768] [MR: 654103] [Zbl: 0487.76008]
  17. J. E. MARSDEN and T. J. R. HUGHES, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs (1983). [Zbl: 0545.73031]
  18. J L THOMPSON, Some existence theorems for the traction boundary-value problem of linearized elastostatics, Arch Rat Mech An 32, 369-399 (1969) [MR: 237130] [Zbl: 0175.22108]
  19. C TRUESDELL and W NOLL, The Nonlinear Field theories of Mechanics, Handbuch der Physik, Vol III/3, 1-602 (1965) [MR: 193816] [Zbl: 1068.74002]
  20. T VALENT, Sulla differenziabilita dell' operatore di Nemystky, Mend Acc Naz Lincei 65, 15-26 (1978) [Zbl: 0424.35084]
  21. Y H WAN, The traction problem for incompressible materials, To appear in Arch Rat Mech An [MR: 797048] [Zbl: 0574.73013]
  22. C C WANG and C TRUESDELL, Introduction to Rational Elasticity, Noordhoff Groningen (1973) [MR: 468442] [Zbl: 0308.73001]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you