Free Access
Volume 22, Number 3, 1988
Page(s) 477 - 498
Published online 31 January 2017
  1. O. AXELSSON, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I.M.A. Journal Num. Anal., 1 (1981), 329-345 [MR: 641313] [Zbl: 0508.76069] [Google Scholar]
  2. O. AXELSSON, On the numerical solution of convection dominated convection-diffusion problems, in : Proc. Tagung Math. Physik, Karl-Marx-Stadt 1983,Teubner-Texte, Leipzig 1984. [MR: 781752] [Zbl: 0563.76084] [Google Scholar]
  3. C. BARDOS, J. RAUCH, Maximal positive boundary value problems as limits of singular perturbations problems, Transact. Amer. Math. Soc, 270 (1982) 2,377-400. [MR: 645322] [Zbl: 0485.35010] [Google Scholar]
  4. A. DEVINATZ, R. ELLIS, A. FRIEDMAN , The asymptotic behaviour of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives II. Indiana Univ. Math. J., 23 (1974), 991-1011. [MR: 344709] [Zbl: 0263.35026] [Google Scholar]
  5. A. FELGENHAUER, Application of a generalized maximum principle to estimate the corner layers in the n-dimensional case, in : Singularly perturbed differential equations and applications (J. Förste ed.), Akademie der Wissenschaften der DDR, Inst. f. Math., Report R-Mech 03/84, Berlin 1984, 1-8. [Google Scholar]
  6. M. B. GILLES, M. E. ROSE, A numerical study of the steady scalar convective diffusion equation for small viscosity, J. Comput. Phys. 56 (1984), 513-529. [MR: 768674] [Zbl: 0572.76087] [Google Scholar]
  7. H. GOERING, A. FELGENHAUER, G. LUBE, H. G. ROOS, L. TOBISKA, Singularly perturbed differential equations, Math. Research, v. 13, Akademie-Verlag Berlin 1983. [MR: 718115] [Zbl: 0522.35003] [Google Scholar]
  8. T. J. R. HUGHES, A. BROOKS, multidimensional upwind scheme with no crosswind diffusion, in : AMD v. 34, Finite element methods for convection dominated flows (T. J. R. Hughes ed.), ASME, New York, 1979. [MR: 571679] [Zbl: 0423.76067] [Google Scholar]
  9. K. W. JEMELJANOV, On a difference scheme for the équation $\varepsilon \Delta u + au_{x_1}=f$ , in : Difference methods for solving boundary value problems containing a small parameter and discontinuous boundary conditions, Isd. Uralskovo nacn. centra AN SSSR, Swerdlowsk 1976, 19-37 (russ.). [Google Scholar]
  10. C. JOHNSON, U. NÄVERT, J. PITKARANTA, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Engrg. 45 (1984), 285-312. [MR: 759811] [Zbl: 0526.76087] [Google Scholar]
  11. R. B. KELLOGG, Analysis of a difference approximation for a singular perturbation problem in two dimensions, in : Proc. Conf. Boundary and interior layers - computational and asymptotic methods (J. J. H. Miller ed.), Dublin 1980, Boole Press 1980, 113-117. [MR: 589355] [Zbl: 0439.65081] [Google Scholar]
  12. J. J. H. MILLER, On the convergence, uniformly in $\varepsilon $, of difference schemes for a two point boundary value problem, in : Numerical analysis of singular perturbation problems (P. W. Hemker and J. J. H. Miller, eds.), Academic Press, London, New York, San Francisco 1979, 467-474. [MR: 556537] [Zbl: 0419.65051] [Google Scholar]
  13. [13]A. MIZUKAMI, T. J. R. HUGHES, A Petrov-Galerkin finite element method for solving convection dominated flows : an accurate upwinding technique for satisfying the maximum principle, Comp. Meth. Appl. Mech. Engrg. 50 (1985),181-193. [MR: 802339] [Zbl: 0553.76075] [Google Scholar]
  14. U. NÄVERT, A finite element method for convection-diffusion problems, Thesis, Chalmers Univ. of Technol., Gothenburg, Sweden 1982. [Google Scholar]
  15. K. NIIJIMA, On a three-point difference scheme for a singular perturbation problem without a first derivative term, Mem. Num. Math. 7 (1980). [MR: 588462] [Zbl: 0484.65054] [Google Scholar]
  16. M. H. PROTTER, H. F. WEINBERGER, Maximum principles in differential equations, Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1967. [MR: 219861] [Zbl: 0153.13602] [Google Scholar]
  17. [17] U. RISCH, Ein hybrides upwind-FEM-Verfahren und dessen Anwendung auf schwach gekoppelte elliptische Differentialgleichungen mit dominanter Konvektion, Dissertation, Techn. Hochschule Magdeburg 1986. [Google Scholar]
  18. A. M. SCHATZ, L. B. WAHLBIN, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimension, Math. Comp.40 (1983), 47-89. [MR: 679434] [Zbl: 0518.65080] [Google Scholar]
  19. F. SCHIEWECK, Eine asymptotisch angepafite Finite-Element-Methode fur singulär gestörte elliptische Randwertaufgaben, Dissertation, Techn. Hochschule Magdeburg 1986. [Google Scholar]
  20. G. I. SHISHKIN, Solution of a boundary value problem for an elliptic equation with a small parameter affecting the highest derivatives, Shurnal Vytsch. Mat. Mat. Fis., 26 (1986), 1019-1031 (russ.). [MR: 851752] [Zbl: 0622.65078] [Google Scholar]
  21. G. I. SHISHKIN, V. A. TITOV, A différence scheme for a differential equation with two small parameters affecting the derivatives, Numer. Meth. Mechs. Cont. Media, 7 (1976), 145-155. (russ.) [MR: 455427] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you