Free Access
Issue
ESAIM: M2AN
Volume 22, Number 4, 1988
Page(s) 609 - 624
DOI https://doi.org/10.1051/m2an/1988220406091
Published online 31 January 2017
  1. H. ATTOUCH, Variational convergence for functions and operators, Pitman. London (1984). [MR: 773850] [Zbl: 0561.49012] [Google Scholar]
  2. A. BRILLARD, M. LOBO, E. PEREZ, Homogénéisation de frontières par épi-convergence en élasticité linéaire. (A paraître). [Zbl: 0691.73013] [Google Scholar]
  3. D. CIORANESCU, F. MURAT, Un terme étrange venu d'ailleurs. Collège de France Seminar, Research Notes in Mathematics, Pitman, London, (1982)n° 60, p. 98-138, n° 70, pp. 154-178. [Zbl: 0496.35030] [Google Scholar]
  4. J. DENY, Sur la convergence de certaines intégrales de la théorie du potentiel. Arch. Math. Vol. V, (1954), p. 367-371. [MR: 66513] [Zbl: 0057.33104] [Google Scholar]
  5. G. DUVAUT, J. L. LIONS, Les inéquations en mécanique et en physique. Dunod. Paris (1972). [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  6. W. ECKHAUS, Asymptotic Analysis and Singular Pertubations, North-Hoïland, Amsterdam (1979). [MR: 553107] [Zbl: 0421.34057] [Google Scholar]
  7. O. A. LADYZHENSKAY, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach. London (1969). [MR: 254401] [Zbl: 0184.52603] [Google Scholar]
  8. L. LANDAU, E. LIFCHITZ, Théorie de l'Elasticité. Mir. Moscou (1967). [Zbl: 0166.43101] [Google Scholar]
  9. J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes et applications. Vol. I. Dunod, Paris (1968). [Zbl: 0165.10801] [Google Scholar]
  10. M. LOBO, E. PEREZ, Comportement asymptotique d'un corps élastique dont une surface présente de petites zones de collage. C.R. Acad. Se. Paris, t. 304, Série II n° 5, 1987. [MR: 977600] [Zbl: 0602.73019] [Google Scholar]
  11. R.C. Mac CAMY, E. STEPHAN, Solution Procedures for Three-Dimensional Eddy Current Problems. J. Math. Anal. Appl. 101 (1984), 348-379. [MR: 748577] [Zbl: 0563.35054] [Google Scholar]
  12. F. MURAT, Neumann's Sieve. Proceedings of the meeting on variational methods in nonlinear analysis, Isle of Elba 1983. Research Notes in Mathematics,° 127 Pitman, London, 1985. [MR: 807534] [Zbl: 0586.35037] [Google Scholar]
  13. C. PICARD, Analyse limite d'équations variationnelles dans un domaine contenant une grille. Thèse d'Etat. Université de Paris-Sud. Orsay (1984). [Google Scholar]
  14. E. SANCHEZ-PALENCIA, Boundary value problems in domains containing Perforated walls. In Nonlinear Differential Equations, Collège de France Seminar, Vol. III, Research Notes in Mathematics, 70, p. 309-325, Pitman, London (1982). [MR: 670282] [Zbl: 0505.35020] [Google Scholar]
  15. J. SANCHEZ-HUBERT, E. SANCHEZ-PALENCIA, Acoustic fiuid flow through holes and permeability of perforated walls. Jour. Math. Anal. Appl., 87, (1982) p. 427-453. [MR: 658023] [Zbl: 0484.76101] [Google Scholar]
  16. I.N. SNEDDON, Fourier transforms, McGraw-Hill. London (1951). [MR: 41963] [Zbl: 0038.26801] [Google Scholar]
  17. R. TEMAM, Problèmes mathématiques en plasticité. Gauthier-Villars. Paris (1983). [MR: 711964] [Zbl: 0547.73026] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you