Free Access
Issue
ESAIM: M2AN
Volume 22, Number 4, 1988
Page(s) 625 - 653
DOI https://doi.org/10.1051/m2an/1988220406251
Published online 31 January 2017
  1. M. ABRAMOWITZ & A. STEGUN, Handbook of Mathematical Functions. Dover Publications Inc., New York, 1965. [Zbl: 0171.38503] [Google Scholar]
  2. J. P. BENQUE, G. LABADIE & J. RONAT, A new finite element method for the Navier-Stokes equations coupled with a temperature equation. Proc. 4th Int. Symp. on Finite Element Methods in Flow Probiems (Ed. T. Kawai), North-Holland, Amsterdam, Oxford, New York, 1982, pp. 295-301. [MR: 706421] [Zbl: 0508.76049] [Google Scholar]
  3. M. BERCOVIER& O. PIRONNEAU, Characteristics and the finite element method. Proc. 4th Int. Symp. on Finite Element Methods in Flow Problems (Ed. T. Kawai), North-Holland, Amsterdam, Oxford, New York, 1982, pp. 67-63. [MR: 706421] [Zbl: 0508.76007] [Google Scholar]
  4. P. N. CHILDS & K. W. MORTON, Characteristic Galerkin methods for scalar conservation laws in on dimension. Oxford University Computing Laboratory Report No. 86/5, 1986. To appear in SIAM J. Numerical Analysis. [Zbl: 0728.65086] [Google Scholar]
  5. A. J. CHORIN & K. W. MORTON, A Mathematical Introduction to Fluid Mechanics (Universitext). Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. [Zbl: 0417.76002] [Google Scholar]
  6. J. DOUGLAS Jr & T. F. RUSSELL, Numerical methods for convention-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19 (1982), pp. 871-885. [MR: 672564] [Zbl: 0492.65051] [Google Scholar]
  7. J. W. EASTWOOD, Privarte communication. [Google Scholar]
  8. F. H. HARLOW, The particle in celle computing method for fluid dynamics. Methods in Computational Physis (Ed. B. Adler, S. Fernbach & M. Rotenberg), Vol. 3, Academic Press, New York, 1964. [Google Scholar]
  9. R. W. HOCKNEY & J. W. EASTWOOD, Computer Simulation Using Particles. McGraw-Hill, New York, 1981. [Zbl: 0662.76002] [Google Scholar]
  10. Z. KOPAL, Numerical Analysis. Chapman & Hall Ltd. London, 1961. [Zbl: 0101.33701] [Google Scholar]
  11. I. V. KRYLOV, Approximate Calculation of Integrals. Mac Millan, New York, 1962. [MR: 144464] [Zbl: 0111.31801] [Google Scholar]
  12. P. LESAINT, Numerical solution of the equation of continuity. Topics in Numerical Analysis III (Ed. J. J. H. Miller), Academic Press, London, New York, San Francisco, 1977, pp. 199-222. [MR: 658144] [Zbl: 0435.76010] [Google Scholar]
  13. K. W. MORTON & A. PRIESTLEY, On characteristic and Lagrange-Galerkin methods. Pitman Research Notes in Mathematics Series (Ed. D. F. Griffiths & G. A. Watson), Longman Scientific and Technical, Harlow, 1986. [Google Scholar]
  14. K. W. MORTON & P. SWEBY, A comparison of flux limited difference methods and characteristic Galerkin methods for shock modelling. To appear in J. Comput. Phys. [Zbl: 0632.76077] [Google Scholar]
  15. O. PIRONNEAU, On the transport diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38 (1982), pp. 309-332. [EuDML: 132765] [MR: 654100] [Zbl: 0505.76100] [Google Scholar]
  16. T. F. RUSSELL, Time stepping along characteristics with incomplete iteration for a Galerin approcimation of miscible displacement in porus media. Ph. D. Thesis, University of Chicago, 1980. [Zbl: 0594.76087] [Google Scholar]
  17. E. SÜLI, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53 (1988), pp. 459-483. [EuDML: 133286] [MR: 951325] [Zbl: 0637.76024] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you