Free Access
Volume 23, Number 1, 1989
Page(s) 129 - 136
Published online 31 January 2017
  1. K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, Englewood Cliffs, N.J. [Google Scholar]
  2. M. BERCOVIER, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236. [EuDML: 193320] [MR: 509973] [Zbl: 0428.65059] [Google Scholar]
  3. C. CANUTO, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50. [EuDML: 193309] [MR: 488712] [Zbl: 0434.65032] [Google Scholar]
  4. C. CANUTO, A hybrid finite element to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118. [EuDML: 193371] [MR: 618818] [Zbl: 0462.73049] [Google Scholar]
  5. V. GIRAULT and P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  6. D. F. GRIFFITHS, Finite elements for incompressible flow, Math. Meth. in the Appl. Sci. 1 (1979), 16-31. [MR: 548403] [Zbl: 0425.65061] [Google Scholar]
  7. D. F. GRIFFITHS, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346. [MR: 633811] [Zbl: 0469.76026] [Google Scholar]
  8. B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation of mixed and hybrid methods, Math. Compt. 36 (1981), 427-453. [MR: 606505] [Zbl: 0472.65080] [Google Scholar]
  9. J. T. ODEN, N. KIKUCHI and Y. J. SONG, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-239. [MR: 677872] [Zbl: 0478.76041] [Google Scholar]
  10. J. S. PETERSON, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634. [MR: 725657] [Zbl: 0526.76039] [Google Scholar]
  11. G. STRANG and G. F. FIX, An Analysis of the Finite Element Method, Prentice-Hall, 1973, Englewood Cliffs, N.J. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  12. R. TEMAM, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford. [Zbl: 0426.35003] [Google Scholar]
  13. R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia. [MR: 764933] [Zbl: 0833.35110] [Google Scholar]
  14. F. THOMASSET, Implementation of the Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin. [MR: 720192] [Zbl: 0475.76036] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you