Free Access
Issue
ESAIM: M2AN
Volume 23, Number 3, 1989
Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987
Page(s) 415 - 431
DOI https://doi.org/10.1051/m2an/1989230304151
Published online 31 January 2017
  1. S. ANGENENT 1, The Morse-Smale property for a semi linear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. [MR: 837763] [Zbl: 0581.58026] [Google Scholar]
  2. S. ANGENENT 2, The zeroset of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79-96. [EuDML: 153060] [MR: 953678] [Zbl: 0644.35050] [Google Scholar]
  3. S. ANGENENT & B. FIEDLER, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. AMS 307 (1988), 545-568. [MR: 940217] [Zbl: 0696.35086] [Google Scholar]
  4. I. BENDIXSON, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), 1-88. [Zbl: 31.0328.03] [MR: 1554923] [JFM: 31.0328.03] [Google Scholar]
  5. J. E. BILLOTI & J. P. LASALLE, Periodic dissipative processes, Bull. AMS 6 (1971), 1082-1089. [Zbl: 0274.34061] [Google Scholar]
  6. P. BRUNOVSKÝ & B. FIEDLER 1, Zero numbers on invariant manifolds in scalar reaction diffusion equations, Nonlin. Analysis TMA 10 (1986), 179-194. [MR: 825216] [Zbl: 0594.35056] [Google Scholar]
  7. P. BRUNOVSKÝ & B. FIEDLER 2, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1 (1988), 57-89. [MR: 945964] [Zbl: 0679.35047] [Google Scholar]
  8. P. BRUNOVSKÝ & B. FIEDLER 3, Connecting orbits in scalar reaction diffusion equations II, to appear in J. Diff. Eq. [MR: 945964] [Zbl: 0699.35144] [Google Scholar]
  9. E. A. CODDINGTON & N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955. [MR: 69338] [Zbl: 0064.33002] [Google Scholar]
  10. C. C. CONLEY & J. SMOLLER, Topological techniques in reaction diffusion equations, in « Biological Growth and Spread », Jäger & Rost & Tautu (eds.), Lect. Notes Biomath. 38, Springer-Verlag, Heidelberg 1980, 473-483. [MR: 609381] [Zbl: 0444.35005] [Google Scholar]
  11. C. M. DAFERMOS, Asymptotic behavior of solutions of evolution equations, in « Nonlinear Evolution Equations », M. G. Crandall (ed.), Academic Press, New York 1978, 103-123. [MR: 513814] [Zbl: 0499.35015] [Google Scholar]
  12. B. FIEDLER & J. MALLET-PARET 1, Connections between Morse sets for delay-differential equations, to appear in J. reine angew. Math. [EuDML: 153131] [MR: 993217] [Zbl: 0659.34077] [Google Scholar]
  13. B. FIEDLER & J. MALLET-PARET 2, A Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational Mech. Analysis, in press. [MR: 1004714] [Zbl: 0704.35070] [Google Scholar]
  14. J. K. HALE, Ordinary Differential Equations, John Wiley & Sons, New York 1969. [MR: 419901] [Zbl: 0186.40901] [Google Scholar]
  15. J. K. HALE & L. T. MAGALHĀES & W. M. OLIVA, An Introduction to Infinite imensional Dynamical Systems - Geometrie Theory, Appl. Math. Sc. 47, Springer-Verlag, New York 1984. [MR: 725501] [Zbl: 0533.58001] [Google Scholar]
  16. P. HARTMAN, Ordinary Differential Equations, Birkäuser, Boston 1982. [MR: 658490] [Zbl: 0476.34002] [Google Scholar]
  17. D. HENRY 1, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, New York 1981. [MR: 610244] [Zbl: 0456.35001] [Google Scholar]
  18. D. HENRY 2, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Diff. Eq. 59 (1985), 165-205. [MR: 804887] [Zbl: 0572.58012] [Google Scholar]
  19. M. W. HIRSCH 1, Differential equations and convergence almost everywhere in strongly monotone semiflows, in « Nonlinear Partial Differential Equations », J.Smoller (ed.), AMS, Providence 1983, 267-285. [MR: 706104] [Zbl: 0523.58034] [Google Scholar]
  20. M. W. HIRSCH 2, Systems of differential equations that are competitive or cooperative II. Convergence almost everywhere. SIAM J. Math. Anal. 16 (1985), 423-439. [MR: 783970] [Zbl: 0658.34023] [Google Scholar]
  21. M. W. HIRSCH 3, Stability and convergence in strongly monotone dynamical Systems, J. reine angew. Math. 383 (1988), 1-53. [EuDML: 152991] [MR: 921986] [Zbl: 0624.58017] [Google Scholar]
  22. J. L. KAPLAN & J. A. YORKE, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal. 6 (1975), 268-282. [MR: 361367] [Zbl: 0241.34080] [Google Scholar]
  23. S. LEFSCHETZ, Differential Equations : Geometric Theory, Wiley & Sons, New York 1963. [MR: 153903] [Zbl: 0107.07101] [Google Scholar]
  24. J. MALLET-PARET, 1 Morse decompositions and global continuation of periodic solutions for singularly perturbed delay equations, in « Systems of Nonlinear Partial Differential Equations », J. M. Ball (ed.), D. Reidel, Dordrecht 1983, 351-366. [MR: 725532] [Zbl: 0562.34060] [Google Scholar]
  25. J. MALLET-PARET 2, Morse decompositions for delay-differential equations, J. Diff. Eq. 72 (1988), 270-315. [MR: 932368] [Zbl: 0648.34082] [Google Scholar]
  26. J. MALLET-PARET & H. SMITH, A Poincaré-Bendixson theorem for monotone cyclic feedback Systems, preprint 1987. [MR: 1073471] [Zbl: 0712.34060] [Google Scholar]
  27. P. MASSATT, The convergence of scalar parabolic equations with convection to periodic solutions, preprint 1986. [Google Scholar]
  28. H. MATANO 1, Convergence of solutions of one-dimensional parabolic equations, J. Math. Kyoto Univ. 18 (1978), 221-227. [MR: 501842] [Zbl: 0387.35008] [Google Scholar]
  29. H. MATANO 2, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 29 (1982), 401-441. [MR: 672070] [Zbl: 0496.35011] [Google Scholar]
  30. H. MATANO 3, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving Systems, J. Fac. Sc. Univ. Tokyo Sec. IA 30 (1984), 645-673. [MR: 731522] [Zbl: 0545.35042] [Google Scholar]
  31. H. MATANO 4, Asymptotic behavior of solutions of semilinear heat equations on S1, in « Nonlinear Diffusion equations and Their Equilibrium States », W.-M. Ni & B. Peletier & J. Serrin (eds.), Springer-Verlag, New York 1988, 139-162. [MR: 956085] [Zbl: 0671.35039] [Google Scholar]
  32. H. MATANO 5, Asymptotic behavior of nonlinear equations, Res. Notes Math., Pitman, to appear. [Zbl: 0445.35063] [Google Scholar]
  33. H. MATANO 6, Strongly order-preserving local semi-dynamical Systems - theory and applications, in « Semigroups, Theory and Applications », H. Brezis & M. G. Crandall & F. Kappel (eds.), John Wiley & Sons, New York 1986. [Zbl: 0634.34031] [Google Scholar]
  34. K. MISCHAIKOW, Conley's connection matrix, in « Dynamics of Infinite Dimensional Systems », S.-N. Chow & J. K. Hale (eds.), Springer-Verlag, Berlin 1987, 179-186. [MR: 921911] [Zbl: 0655.34036] [Google Scholar]
  35. K. NICKEL, Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. reine angew. Math. 211 (1962), 78-94. [EuDML: 150550] [MR: 146534] [Zbl: 0127.31801] [Google Scholar]
  36. H. POINCARÉ, Œuvres I, Gauthier-Villars, Paris 1928. [Google Scholar]
  37. G. PÓLYA, Qualitatives über Wärmeausgleich, Z. Angew. Math. Mech. 13 (1933), 125-128. [JFM: 59.0494.01] [Google Scholar]
  38. SANSONE & R. CONTI, Non-Linear Differential Equations, Pergamon Press, Oxford 1964. [Zbl: 0128.08403] [Google Scholar]
  39. H. SMITH, Monotone semiflows generated by functional differential equations, J. Diff. Eq. 66 (1987), 420-442. [MR: 876806] [Zbl: 0612.34067] [Google Scholar]
  40. R. A. SMITH 1, The Poincaré-Bendixson theorem for certain differential equations of higher order, Proc. Roy. Soc. Edmburgh A 83 (1979), 63-79. [MR: 538586] [Zbl: 0408.34042] [Google Scholar]
  41. R. A. SMITH 2, Existence of periodic orbits of autonomous ordinary differential equations, Proc. Roy. Soc. Edmburgh A 85 (1980), 153-172. [MR: 566073] [Zbl: 0429.34040] [Google Scholar]
  42. R. A. SMITH 3, Existence of periodic orbits of autonomous retarded functional differential equations, Math. Proc. Camb. Phil. Soc. 88 (1980), 89-109. [MR: 569635] [Zbl: 0435.34062] [Google Scholar]
  43. J. SMOLLER, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York 1983. [MR: 688146] [Zbl: 0508.35002] [Google Scholar]
  44. C. STURM, Sur une classe d'équations à différences partielles, J. Math. Pure Appl. 1 (1836), 373-444. [EuDML: 234789] [Google Scholar]
  45. T. I. ZELENYAK, Stabilization of solutions of boundary value problems for a second order prabolic equation with one space variable, Differential Equations 4, 1 (1968), 17-22. [MR: 223758] [Zbl: 0232.35053] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you