Free Access
Issue
ESAIM: M2AN
Volume 23, Number 3, 1989
Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987
Page(s) 433 - 443
DOI https://doi.org/10.1051/m2an/1989230304331
Published online 31 January 2017
  1. J. E. BILLOTI and J. P. LA SALLE, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971) 1082-1088. [MR: 284682] [Zbl: 0274.34061] [Google Scholar]
  2. K. J. BLOW and N. J. DORAN, Global and local chaos in the pumped nonlinear Schrödinger equation, Physical Review Letters 52 (1984) 526-539. [Google Scholar]
  3. P. CONSTANTIN, C. FOIAS and R. TEMAM, Attractors representing turbulent flows, Memoirs of A.M.S. 53 (1985) n° 314. [MR: 776345] [Zbl: 0567.35070] [Google Scholar]
  4. J. M. GHIDAGLIA, Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, t. 305, Série I (1987) 291-294. [MR: 910362] [Zbl: 0638.35020] [Google Scholar]
  5. J. M. GHIDAGLIA, Finite dimensional behavior for weakly damped driven Schrodinger equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 5 (1988) 365-405. [EuDML: 78158] [MR: 963105] [Zbl: 0659.35019] [Google Scholar]
  6. J. M. GHIDAGLIA, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical System in the long time, J. Diff. Equ. 74 (1988) 369-390. [MR: 952903] [Zbl: 0668.35084] [Google Scholar]
  7. J. M. GHIDAGLIA and B. HÉRON, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica 28D (1987) 282-304. [MR: 914451] [Zbl: 0623.58049] [Google Scholar]
  8. J. M. GHIDAGLIA and R. TEMAM Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987) 282-304. [Zbl: 0572.35071] [MR: 913856] [Google Scholar]
  9. K. NOZAKI and N. BEKKI, Low-dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica 21D (1986) 381-393. [MR: 862265] [Zbl: 0607.35017] [Google Scholar]
  10. N. LEVINSON, Transformation theory of nonlniear differential equations of the second order, Annals of Math. 45 (1944) 723-737. [MR: 11505] [Zbl: 0061.18910] [Google Scholar]
  11. V. E. ZAKHAROV and A. B. SHABAT, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972) 62-39. [MR: 406174] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you