Free Access
Volume 23, Number 3, 1989
Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987
Page(s) 445 - 461
Published online 31 January 2017
  1. J. E. BILLOTTI, J. P. LASALLE (1971), Dissipative periodic processes, Bull. Amer.Math. Soc, 77, pp. 1082-1088. [MR: 284682] [Zbl: 0274.34061] [Google Scholar]
  2. S.-N. CHOW, K. LU and G. R. SELL (1988), Smoothness of inertial manifolds, Preprint. [MR: 1180685] [Zbl: 0767.58026] [Google Scholar]
  3. P. CONSTANTIN (1988), A construction of inertial manifolds, Preprint. [MR: 1034492] [Zbl: 0691.58040] [Google Scholar]
  4. P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM (1989), Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, No 70, Springer-Verlag. [MR: 966192] [Zbl: 0683.58002] [Google Scholar]
  5. P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM (1989), Spectral barriers and inertial manifolds for dissipative partial differential equations, J Dynamics and Differential Equations, 1 (to appear). [MR: 1010960] [Zbl: 0701.35024] [Google Scholar]
  6. P. CONSTANTIN, C. FOIAS, R. TEMAM (1985), Attractors representing turbulent flows, Memoirs Amer. Math. Soc., 314. [MR: 776345] [Zbl: 0567.35070] [Google Scholar]
  7. C. R. DOERING, J. D. GIBBON, D. D. HOLM and B. NICOLAENKO (1988), Low dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity (to appear). [MR: 937004] [Zbl: 0655.58021] [Google Scholar]
  8. E. FABES, M. LUSKIN and G. R. SELL (1988), Construction of inertial manifolds by elliptic regularization, J. Differential Equations, to appear. [MR: 1091482] [Zbl: 0728.34047] [Google Scholar]
  9. C. FOIAS, M. S. JOLLY, I. G. KEVREKIDIS, G. R. SELL, E. S. TITI (1988), On the computation of inertial manifolds, Physics Letters A, Vol. 131, No 7, 8, pp. 433-436. [MR: 972615] [Google Scholar]
  10. C. FOIAS, B. NICOLAENKO, G. R. SELL, R. TEMAM (1988), Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimensions, J. Math. Pures Appl., 67, pp. 197-226. [MR: 964170] [Zbl: 0694.35028] [Google Scholar]
  11. C. FOIAS, G. R. SELL and R. TEMAM (1986), Inertial manifolds for nonlinear evolutionary equations, IMA Preprint No 234, March, 1986 Also in, J. Differential Equations, 73 (1988), pp. 309-353. [MR: 943945] [Zbl: 0643.58004] [Google Scholar]
  12. C. FOIAS, G. R. SELL and E. S. TITI (1988), Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynamics and Differential Equations, to appear. [MR: 1010966] [Zbl: 0692.35053] [Google Scholar]
  13. C. FOIAS and R. TEMAM (1979), Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl., 58, pp. 339-368. [MR: 544257] [Zbl: 0454.35073] [Google Scholar]
  14. J.-M. GHIDAGLIA, Discrétisation en temps et variétés inertielles pour des équations d'évolution aux dérivées partielles non linéaires, Preprint. [Zbl: 0666.35049] [Google Scholar]
  15. J. K. HALE (1988), Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence. [MR: 941371] [Zbl: 0642.58013] [Google Scholar]
  16. J. K. HALE and G. R. SELL (1988), Inertial manifolds for gradient Systems. [Google Scholar]
  17. D. HENRY (1981), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, No 840, Springer-Verlag, New York. [MR: 610244] [Zbl: 0456.35001] [Google Scholar]
  18. M. S. JOLLY (1988), Explicit construction of an inertial manifold for a reaction diffusion equation, J. Differential Equations (to appear). [MR: 992147] [Zbl: 0691.35049] [Google Scholar]
  19. D. A. KAMAEV (1981), Hopf's conjecture for a class of chemical kinetics equations, J. Soviet Math., 25, pp. 836-849. [Zbl: 0531.35040] [Google Scholar]
  20. M. LUSKIN and G. R. SELL (1988), Parabolic regularization and the construction of inertial manifolds, Preprint. [Google Scholar]
  21. J. MALLET-PARET (1976), Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22, pp. 331-348. [MR: 423399] [Zbl: 0354.34072] [Google Scholar]
  22. J. MALLET-PARET and G. R. SELL (1987), Inertial manifolds for reaction diffusion equations in higher space dimensions, IMA Preprint No. 331, June 1987, Also in, J. Amer. Math. Soc, 1, No. 4 (1988), pp. 805-866. [MR: 943276] [Zbl: 0674.35049] [Google Scholar]
  23. R. MANÉ (1977), Reduction of semilinear parabolic equations to finite dimensional C1 flows, Geometry and Topology, Lecture Notes in Math., vol. 597, Springer-Verlag, New York, pp.361-378. [MR: 451309] [Zbl: 0412.35049] [Google Scholar]
  24. R. MANÉ, (1981) On the dimension of the compact invariant sets of certain nonlinear maps, Lecture Notes in Math, vol. 898, Springer-Verlag, New York, pp. 230-242. [MR: 654892] [Zbl: 0544.58014] [Google Scholar]
  25. M. MARION (1988), Inertial manifolds associated to partly dissipative reaction diffusion equations, J. Math. Anal. Appl. (to appear). [Zbl: 0689.58039] [Google Scholar]
  26. X. MORA (1983), Finite dimensional attracting manifolds in reaction diffusion equations, Contemporary Math., 17, pp. 353-360. [MR: 706109] [Zbl: 0525.35046] [Google Scholar]
  27. X. MORA and J. SOLÀ-MORALES (1987), Existence and non-existence of finite dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamics of Infinite Dimensional Systems, Springer-Verlag, New York, pp. 187-210. [MR: 921912] [Zbl: 0642.35062] [Google Scholar]
  28. X. MORA and J. SOLÀ-MORALES (1988), The singular limit dynamics of semilinear damped wave equations, Preprint, Univ. Autònoma Barcelona. [MR: 992148] [Zbl: 0699.35177] [Google Scholar]
  29. B. NICOLAENKO, B. SCHEURER and R. TEMAM, (1987), Some global dynamical properties of a class of pattern formation equations, IMA Preprint No. 381. [MR: 976973] [Zbl: 0691.35019] [Google Scholar]
  30. A. PAZY (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol.44, Springer-Verlag, New York. [MR: 710486] [Zbl: 0516.47023] [Google Scholar]
  31. R. J. SACKER (1964), On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, NYU Preprint No. 333, October 1964. [Google Scholar]
  32. R. J. SACKER (1965), A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math., 18, pp.717-732. [MR: 188566] [Zbl: 0133.35501] [Google Scholar]
  33. R. J. SACKER (1969), A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18, pp.705-762. [MR: 239221] [Zbl: 0218.34046] [Google Scholar]
  34. G. R. SELL and Y. YOU (1988), Inertial manifolds : The non self adjoint case, Preprint. [Zbl: 0760.34051] [Google Scholar]
  35. M. TABOADA (1988), Finite dimensional asymptotic behavior for the Swift-Hohenberg model of convection, Nonlinear Analysis, TMA, to appear. [MR: 1028246] [Zbl: 0707.58019] [Google Scholar]
  36. R. TEMAM (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you