Free Access
Issue
ESAIM: M2AN
Volume 23, Number 4, 1989
Page(s) 597 - 613
DOI https://doi.org/10.1051/m2an/1989230405971
Published online 31 January 2017
  1. G. A. BAKER & J. H. BRAMBLE, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer. 13 (1979), 75-100. [EuDML: 193340] [MR: 533876] [Zbl: 0405.65057] [Google Scholar]
  2. J. M. BALL, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. [MR: 319440] [Zbl: 0254.73042] [Google Scholar]
  3. I. CHRISTIE & J. M. SANZ-SERNA, A Galerkin method for a nonlinear integro-differential wave system, Comp. Meth. Appl. Mech. Eng. 44 (1984), 229-237. [MR: 757058] [Zbl: 0525.73089] [Google Scholar]
  4. R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953. [MR: 65391] [Zbl: 0051.28802] [Google Scholar]
  5. R. W. DICKEY, Free vibrations and dynamic buckling of an extensible beam, Math. Anal. Appl. 29 (1970), 443-454. [MR: 253617] [Zbl: 0187.04803] [Google Scholar]
  6. T. GEVECI, On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms, Math. Compt. 42 (1984), 393-415. [MR: 736443] [Zbl: 0553.65082] [Google Scholar]
  7. P. HOLMES & J. MARSDEN, Bifurcation to divergence and flutter in flow-induced oscillations : An infinite dimensional analysis, Automatica 14 (1978), 367-384. [MR: 495662] [Zbl: 0385.93028] [Google Scholar]
  8. J. RAUCH, On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal. 22 (1985), 245-249. [MR: 781318] [Zbl: 0575.65091] [Google Scholar]
  9. J. M. SANZ-SERNA, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Compt. 43 (1984), 21-27. [MR: 744922] [Zbl: 0555.65061] [Google Scholar]
  10. G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  11. V. THOMÉE, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Compt. 34 (1980), 99-113. [MR: 551292] [Zbl: 0454.65077] [Google Scholar]
  12. V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Springer lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin, 1984. [MR: 744045] [Zbl: 0528.65052] [Google Scholar]
  13. S. WOINOWSKY-KRIEGER, The effect of the axial force on the vibration of hinged bars, J. Appl. Mech, 17 (1950), 35-36. [MR: 34202] [Zbl: 0036.13302] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you