Free Access
Issue
ESAIM: M2AN
Volume 23, Number 4, 1989
Page(s) 597 - 613
DOI https://doi.org/10.1051/m2an/1989230405971
Published online 31 January 2017
  1. G. A. BAKER & J. H. BRAMBLE, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer. 13 (1979), 75-100. [EuDML: 193340] [MR: 533876] [Zbl: 0405.65057]
  2. J. M. BALL, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. [MR: 319440] [Zbl: 0254.73042]
  3. I. CHRISTIE & J. M. SANZ-SERNA, A Galerkin method for a nonlinear integro-differential wave system, Comp. Meth. Appl. Mech. Eng. 44 (1984), 229-237. [MR: 757058] [Zbl: 0525.73089]
  4. R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953. [MR: 65391] [Zbl: 0051.28802]
  5. R. W. DICKEY, Free vibrations and dynamic buckling of an extensible beam, Math. Anal. Appl. 29 (1970), 443-454. [MR: 253617] [Zbl: 0187.04803]
  6. T. GEVECI, On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms, Math. Compt. 42 (1984), 393-415. [MR: 736443] [Zbl: 0553.65082]
  7. P. HOLMES & J. MARSDEN, Bifurcation to divergence and flutter in flow-induced oscillations : An infinite dimensional analysis, Automatica 14 (1978), 367-384. [MR: 495662] [Zbl: 0385.93028]
  8. J. RAUCH, On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal. 22 (1985), 245-249. [MR: 781318] [Zbl: 0575.65091]
  9. J. M. SANZ-SERNA, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Compt. 43 (1984), 21-27. [MR: 744922] [Zbl: 0555.65061]
  10. G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. [MR: 443377] [Zbl: 0356.65096]
  11. V. THOMÉE, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Compt. 34 (1980), 99-113. [MR: 551292] [Zbl: 0454.65077]
  12. V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Springer lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin, 1984. [MR: 744045] [Zbl: 0528.65052]
  13. S. WOINOWSKY-KRIEGER, The effect of the axial force on the vibration of hinged bars, J. Appl. Mech, 17 (1950), 35-36. [MR: 34202] [Zbl: 0036.13302]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you