Free Access
Issue
ESAIM: M2AN
Volume 24, Number 1, 1990
Page(s) 5 - 26
DOI https://doi.org/10.1051/m2an/1990240100051
Published online 31 January 2017
  1. H. ATTOUCH, Variational convergence for fonctions and operators. Appli. Maths. Series. Pitman, London (1984). [Zbl: 0561.49012] [Google Scholar]
  2. P. CIARLET, Elasticité tridimensionnelle. Masson, Paris (1986). [MR: 819990] [Zbl: 0572.73027] [Google Scholar]
  3. D. CIORANESCU et F. MURAT, College de France Seminar. Research Notes in Maths. Vols. 60, 70. Pitman, London (1982). [Google Scholar]
  4. E. DE GIORGI, Convergence problems for functionals and operators. Proceedings Int. Congress « Recent Methods in Nonlinear Analysis ». De Giorgi, Mosco Eds. Pitagora Editrice, Bologna (1979). [MR: 533166] [Zbl: 0405.49001] [Google Scholar]
  5. G. DUVAUT etJ. L. LIONS, Les inéquations en mécanique et en physique.Dunod, Paris (1972). [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  6. V. A. KONDRATIEV et O. A. OLEINIK, On the behaviour at infinity of solutions of elliptic Systems with a finite energy integral. Arch. Rat. Mech. Anal. pp. 75-89 (1987). [MR: 881286] [Zbl: 0637.35030] [Google Scholar]
  7. L. LANDAU etE. LIFCHITZ, Théorie de l'élasticité. Editions Mir, Moscou (1967). [Zbl: 0166.43101] [Google Scholar]
  8. M. LOBO etE. PEREZ, Comportement asymptotique d'un corps élastique dont une surface présente de petites zones de collage. C.R.A.S. Série II, 304, n° 5, pp. 195-198(1987). [MR: 977600] [Zbl: 0602.73019] [Google Scholar]
  9. M. LOBO et E. PEREZ, Asymptotic behaviour of an elastic body with a surface having small sticked regions. Math. Modelling and Num. Analysis, Vol. 22, n° 4, pp. 609-624 (1988). [EuDML: 193543] [MR: 974290] [Zbl: 0659.73006] [Google Scholar]
  10. V. A. MARCHENKO etE. J. HROUSLOV, Problèmes aux limites dans des domaines avec frontières finement granulées. Naukova Dumka, Kiev (1974) (en russe). [Google Scholar]
  11. J. NECAS, Les méthodes directes en théorie des équations elliptiques, Masson,Paris (1967). [MR: 227584] [Google Scholar]
  12. O. A. OLEINIK etG. A. YOSIFIAN, On the asymptotic behaviour at infinity of solutions in linear elasticity. Arch. Rat. Mech. Anal., 78, pp. 29-53 (1982). [MR: 654551] [Zbl: 0491.73008] [Google Scholar]
  13. C. PICARD, Analyse limite d'équations variationnelles dans un domaine contenant une grille, Math. Modelling and Num. Analysis, Vol. 21, n°2, pp. 293-326 (1987). [EuDML: 193504] [MR: 896245] [Zbl: 0626.49008] [Google Scholar]
  14. E. SANCHEZ-PALENCIA, Non-homogeneous media and vibration theory, Lecture Notes in Physics, Vol. 127, Springer Verlag, Berlin (1980). [MR: 578345] [Zbl: 0432.70002] [Google Scholar]
  15. L. TARTAR, Incompressible fluid flow in a porous medium. Convergence of the homogeneization process. Appendice dans la référence [14]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you