Free Access
Volume 24, Number 1, 1990
Page(s) 53 - 65
Published online 31 January 2017
  1. F. CHATELIN, Valeurs Propres de Matrices, Masson, Paris, 1988. [MR: 934203] [Zbl: 0691.65018] [Google Scholar]
  2. M. CLINT andA. JENNINGS, The Evaluation of Eigenvalues and Eigenvectors of Real Symmetric Matrices by Simultaneous Iteration Method, J. Inst. Math. Appl., 8, 111-121, 1971. [MR: 297116] [Zbl: 0221.65070] [Google Scholar]
  3. J. CULLUM andR. A. WILLOUGHBY, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1, Theory, Vol. 2, Programs, Birkhauser, Basel, 1985. [Zbl: 0574.65028] [Google Scholar]
  4. J. CULLUM andR. A. WILLOUGHBY, A Practical Procedure for Computing Eigenvalues of large Sparse Nonsymmetric Matrices, in Large Scale Eigenvalue Problems, eds. J. Cullum and R. A. Willoughby, Elsevier Science Publishers B. V. (North-Holland), 1986. [MR: 875435] [Zbl: 0605.65027] [Google Scholar]
  5. D. HO, Tchebychev Iteration and Its Optimal Ellipse for Nonsymmetric Matrices, Tech. Rep. F-125, IBM Scientific Center, Paris, 1987. [Google Scholar]
  6. A. JENNINGS, Eigenvalue Methods and the Analysis of Structural Vibration, in Sparse Matrices and Their Uses, ed. I. S. Duff, Academic Press, New York, 109-139, 1981. [Zbl: 0457.73072] [Google Scholar]
  7. A. JENNINGS andW. J. STEWART, Simultaneous Iteration for Partial Eigensolution of Real Matrices, J. Math. Inst. Appl., 15, 351-361, 1980. [MR: 408221] [Zbl: 0307.65042] [Google Scholar]
  8. T. A. MANTEUFFEL, An Iterative Method for Solving Nonsymmetric Linear Systems with Dynamic Estimation of Parameters, Ph. D. dissertation, Tech. Rep. UIUCDCS-75-758, University of Illinois, Urbana-Champaign, 1975. [Google Scholar]
  9. T. A. MANTEUFFEL, The Tchebychev Iteration for Nonsymmetric Linear Systems, Numer. Math., 28, 307-327, 1977. [EuDML: 132490] [MR: 474739] [Zbl: 0361.65024] [Google Scholar]
  10. T. A. MANTEUFFEL, Adaptive procedure for Estimation of Parameter for the Non-symmetric Tchebychev Iteration, Numer. Math., 31, 183-208, 1978. [EuDML: 132575] [MR: 509674] [Zbl: 0413.65032] [Google Scholar]
  11. B. NOUR-OMID,B. N. PARLETT andR. TAYLOR, Lanczos Versus Subspace Iteration for the Solution of Eigenvalue Problems, Int. J. Num. Meth. Engr., 19, 859-871, 1983. [Zbl: 0521.65024] [Google Scholar]
  12. B. N. PARLETT,D. R. TAYLOR andZ. Z. LIU, The look ahead Lanczos algorithm for large nonsymmetric eigenproblems, in Computing methods in applied sciences and engineering, eds. R. Glowinski and J. L. Lions, North Holland, 1985. [MR: 806772] [Zbl: 0564.65021] [Google Scholar]
  13. Y. SAAD, Variations on Arnoldi's Method for Computing Eigenelements of Large Unsymmetric Matrices, Linear Algebra Appl., 34, 269-295, 1980. [MR: 591435] [Zbl: 0456.65017] [Google Scholar]
  14. Y. SAAD, Least Squares Polynomials in the Complex Plane with Applications to Solving Sparse Nonsymmetric Matrix Problems, Res. Rep. YALEU/DCS/RR-276, 1983. [Google Scholar]
  15. Y. SAAD, Tchebyshev Acceleration Techniques for Solving Nonsymmetric Eigenvalue Problems, Math. Comp., 42, 567-588, 1984. [MR: 736453] [Zbl: 0539.65013] [Google Scholar]
  16. Y. SAAD, Partial Eigensolutions of Large Nonsymmetric Matrices, Res. Rep. YALEU/DCS/RR-397, 1985. [Google Scholar]
  17. G. W. STEWART, Simultaneous Iteration for Computing Invariant Subspace of non-Hermitian Matrices, Numer. Math., 25, 123-136, 1976. [EuDML: 132366] [MR: 400677] [Zbl: 0328.65025] [Google Scholar]
  18. D. TAYLOR, Analysis of the Look-Ahead Lanczos Algorithm, Ph. D. Thesis, Tech. Rep., Univ. of California, Berkeley, 1983. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you