Free Access
Issue
ESAIM: M2AN
Volume 24, Number 1, 1990
Page(s) 53 - 65
DOI https://doi.org/10.1051/m2an/1990240100531
Published online 31 January 2017
  1. F. CHATELIN, Valeurs Propres de Matrices, Masson, Paris, 1988. [MR: 934203] [Zbl: 0691.65018]
  2. M. CLINT andA. JENNINGS, The Evaluation of Eigenvalues and Eigenvectors of Real Symmetric Matrices by Simultaneous Iteration Method, J. Inst. Math. Appl., 8, 111-121, 1971. [MR: 297116] [Zbl: 0221.65070]
  3. J. CULLUM andR. A. WILLOUGHBY, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1, Theory, Vol. 2, Programs, Birkhauser, Basel, 1985. [Zbl: 0574.65028]
  4. J. CULLUM andR. A. WILLOUGHBY, A Practical Procedure for Computing Eigenvalues of large Sparse Nonsymmetric Matrices, in Large Scale Eigenvalue Problems, eds. J. Cullum and R. A. Willoughby, Elsevier Science Publishers B. V. (North-Holland), 1986. [MR: 875435] [Zbl: 0605.65027]
  5. D. HO, Tchebychev Iteration and Its Optimal Ellipse for Nonsymmetric Matrices, Tech. Rep. F-125, IBM Scientific Center, Paris, 1987.
  6. A. JENNINGS, Eigenvalue Methods and the Analysis of Structural Vibration, in Sparse Matrices and Their Uses, ed. I. S. Duff, Academic Press, New York, 109-139, 1981. [Zbl: 0457.73072]
  7. A. JENNINGS andW. J. STEWART, Simultaneous Iteration for Partial Eigensolution of Real Matrices, J. Math. Inst. Appl., 15, 351-361, 1980. [MR: 408221] [Zbl: 0307.65042]
  8. T. A. MANTEUFFEL, An Iterative Method for Solving Nonsymmetric Linear Systems with Dynamic Estimation of Parameters, Ph. D. dissertation, Tech. Rep. UIUCDCS-75-758, University of Illinois, Urbana-Champaign, 1975.
  9. T. A. MANTEUFFEL, The Tchebychev Iteration for Nonsymmetric Linear Systems, Numer. Math., 28, 307-327, 1977. [EuDML: 132490] [MR: 474739] [Zbl: 0361.65024]
  10. T. A. MANTEUFFEL, Adaptive procedure for Estimation of Parameter for the Non-symmetric Tchebychev Iteration, Numer. Math., 31, 183-208, 1978. [EuDML: 132575] [MR: 509674] [Zbl: 0413.65032]
  11. B. NOUR-OMID,B. N. PARLETT andR. TAYLOR, Lanczos Versus Subspace Iteration for the Solution of Eigenvalue Problems, Int. J. Num. Meth. Engr., 19, 859-871, 1983. [Zbl: 0521.65024]
  12. B. N. PARLETT,D. R. TAYLOR andZ. Z. LIU, The look ahead Lanczos algorithm for large nonsymmetric eigenproblems, in Computing methods in applied sciences and engineering, eds. R. Glowinski and J. L. Lions, North Holland, 1985. [MR: 806772] [Zbl: 0564.65021]
  13. Y. SAAD, Variations on Arnoldi's Method for Computing Eigenelements of Large Unsymmetric Matrices, Linear Algebra Appl., 34, 269-295, 1980. [MR: 591435] [Zbl: 0456.65017]
  14. Y. SAAD, Least Squares Polynomials in the Complex Plane with Applications to Solving Sparse Nonsymmetric Matrix Problems, Res. Rep. YALEU/DCS/RR-276, 1983.
  15. Y. SAAD, Tchebyshev Acceleration Techniques for Solving Nonsymmetric Eigenvalue Problems, Math. Comp., 42, 567-588, 1984. [MR: 736453] [Zbl: 0539.65013]
  16. Y. SAAD, Partial Eigensolutions of Large Nonsymmetric Matrices, Res. Rep. YALEU/DCS/RR-397, 1985.
  17. G. W. STEWART, Simultaneous Iteration for Computing Invariant Subspace of non-Hermitian Matrices, Numer. Math., 25, 123-136, 1976. [EuDML: 132366] [MR: 400677] [Zbl: 0328.65025]
  18. D. TAYLOR, Analysis of the Look-Ahead Lanczos Algorithm, Ph. D. Thesis, Tech. Rep., Univ. of California, Berkeley, 1983.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you