Free Access
Issue
ESAIM: M2AN
Volume 24, Number 2, 1990
Page(s) 197 - 210
DOI https://doi.org/10.1051/m2an/1990240201971
Published online 31 January 2017
  1. M. S. BAZARAA,J. J. GOODE, Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. [MR: 669723] [Zbl: 0497.90058] [Google Scholar]
  2. A. BEN-TAL, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. [MR: 600379] [Zbl: 0416.90062] [Google Scholar]
  3. D. P. BERTSEKAS, Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. [MR: 384144] [Zbl: 0325.90055] [Google Scholar]
  4. D. P. BERTSEKAS, Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. [MR: 690767] [Zbl: 0572.90067] [Google Scholar]
  5. J. F. BONNANS, Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. [MR: 993290] [Zbl: 0678.90068] [Google Scholar]
  6. J. F. BONNANS, Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986. [Google Scholar]
  7. J. F. BONNANS, D. GABAY, Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. [MR: 876712] [Zbl: 0559.90081] [Google Scholar]
  8. J. F. BONNANS,G. LAUNAY, On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. [Zbl: 0794.93096] [Google Scholar]
  9. C. CHARALAMBOUS, A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. [MR: 514613] [Zbl: 0395.90071] [Google Scholar]
  10. F. H. CLARKE, A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. [MR: 414104] [Zbl: 0404.90100] [Google Scholar]
  11. S. P. HAN, A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. [MR: 456497] [Zbl: 0336.90046] [Google Scholar]
  12. S. P. HAN,O. L. MANGASARIAN, Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. [MR: 550845] [Zbl: 0424.90057] [Google Scholar]
  13. M. R. HESTENES, Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. [MR: 461238] [Zbl: 0327.90015] [Google Scholar]
  14. A. D. IOFFE, Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. [MR: 525025] [Zbl: 0417.49027] [Google Scholar]
  15. G. P. MACCORMICK, Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. [MR: 216866] [Zbl: 0166.15601] [Google Scholar]
  16. O. L. MANGASARIAN,M. FROMOVITZ, The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. [MR: 207448] [Zbl: 0149.16701] [Google Scholar]
  17. J. P. PENOT, A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. [MR: 833007] [Zbl: 0562.90078] [Google Scholar]
  18. T. PIETRZYKOWSKI, An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. [MR: 245183] [Zbl: 0181.46501] [Google Scholar]
  19. B. PSCHENICHNYI,Y. DANILINE, Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). [Zbl: 0389.65027] [Google Scholar]
  20. S. M. ROBINSON, Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. [MR: 410522] [Zbl: 0347.90050] [Google Scholar]
  21. R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. [Zbl: 0193.18401] [Google Scholar]
  22. R. T. ROCKAFELLAR, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. [MR: 384163] [Zbl: 0257.90046] [Google Scholar]
  23. E. ROSENBERG, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. [MR: 769237] [Zbl: 0587.90083] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you