Free Access
Volume 24, Number 2, 1990
Page(s) 177 - 196
Published online 31 January 2017
  1. A. A. ARSENEV, Global existence of a weak solution of Vlasov's System of equations, U.S.S.R. Comput. Math, and Math. Phys., 15 (1975), pp. 131-143. [MR: 371322] [Zbl: 0302.35009] [Google Scholar]
  2. A. A. ARSENEV, Local uniqueness and existence of a classical solution of Vlasov's system of equations, Soviet Math. Dokl., 15 (1974), pp. 1223-1225. [Zbl: 0311.76036] [Google Scholar]
  3. C. BARDOS and P. DEGOND, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data. École Polytechnique, Centre de Mathématiques Appliquées, Rapport interne N° 101. [EuDML: 78090] [Zbl: 0593.35076] [MR: 794002] [Google Scholar]
  4. J. T. BEAL andA. MAJDA, Vortex methods I and II, Math. Comp., 32 (1982), pp. 1-27 and pp. 29-52. [Google Scholar]
  5. P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  6. G. H. COTTETandP. A. RAVIART, Particle methods for the one-dimensional Vlasov-Poisson equation, SIAM J. Numer., Anal., 21 (1984), pp. 52-76. [MR: 731212] [Zbl: 0549.65084] [Google Scholar]
  7. G. H. COTTET and P. A. RAVIART, On particle-in-cell methods for the Vlasov-Poisson equations, TTSP, 15 (1986) pp. 1-31. [MR: 831210] [Google Scholar]
  8. J. DENAVIT, Pitfalls in particle simulations and in numerical solutions of the Vlasov equation, in Proceedings of the Oberwalfach Conference on Mathematical Methods of Plasma physics, ed. by R, Kress and J. Wick, 1980, Band 20, pp. 247-269. [Zbl: 0515.76125] [Google Scholar]
  9. J. DUGUNDJI, Topology. Allyn and Bacon, Boston, 1966. [MR: 193606] [Zbl: 0144.21501] [Google Scholar]
  10. P. HANSBO, Finite Element Procedures for Conduction and Convection Problems, Licenciat thesis, Chalmers Univ. of Technology, Department of Structural Mechanics, 1986. [Google Scholar]
  11. R. W. HOCKNEY andJ. W. EASTWOOD, Computer Simulations, using Particles, McGraw-Hill, New York, 1981. [Zbl: 0662.76002] [Google Scholar]
  12. T. J. HUGHES andA. BROOKS, A multidimensional upwind scheme with no crosswind diffusion, in AMD, vol. 34, Finite Element Methods for Convection Dominated Flows, T. J. Hughes (ed.), ASME, New York, 1979. [MR: 571679] [Zbl: 0423.76067] [Google Scholar]
  13. S. V. IORDANSKII, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklow, 60 (1961), 181-194, English transl. Amer. Math. Soc.Trans. ser. 2, 35 (1964), pp. 351-363. [MR: 132278] [Zbl: 0127.21902] [Google Scholar]
  14. C. JOHNSON, Finite element methods for convection-diffusion problems, in Computing Methods in Applied Science and Engineering, R. Glowinski, J. L.Lions (eds.) North-Holland, INRIA, 1982. [MR: 784648] [Zbl: 0505.76099] [Google Scholar]
  15. C. JOHNSON and U. NÀVERT, An analysis of some finite element methods for advection-diffusion, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, O. Axelsson, L. Frank and A. Van der Sluis (eds.), North-Holland, Amsterdam, 1981. [MR: 605502] [Zbl: 0455.76081] [Google Scholar]
  16. C. JOHNSON,U. NÂVERT and J. PITKÂRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods in Appl. Mech. and Engineering, 45 (1985), pp. 285-312. [MR: 759811] [Zbl: 0526.76087] [Google Scholar]
  17. C. JOHNSON and J. SARANEN, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47 (1986), pp. 1-18. [MR: 842120] [Zbl: 0609.76020] [Google Scholar]
  18. C. JOHNSON and A. SZEPESSY, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp. vol. 49, 1987, pp. 427-444. [MR: 906180] [Zbl: 0634.65075] [Google Scholar]
  19. J. L. LIONS, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  20. H. NEUNZERT and J. WICK, The convergence of simulation methods in plasma physics, in Proceedings of the Oberwalfach conference on Mathematical Methods of Plasma Physics, R. Kress and J. Wich (Verlag Peter Lang 1980), Band 20, pp. 272-286. [MR: 713653] [Zbl: 0563.76125] [Google Scholar]
  21. U. NÀVERT, A finite element method for convection-diffusion problems, Thesis,Chalmers Univ. of Technology, Göteborg, 1982. [Google Scholar]
  22. S. UKAI andT. OKABE, On classical solution in the large in time of two-dimensional Vlasov's équation, Osaka J. of Math., 15 (1978), pp. 245-261. [MR: 504289] [Zbl: 0405.35002] [Google Scholar]
  23. A. A. VLASOV, Many Particle Theory and its Application to Plasma, State Publishing House for Technical-Theoretical Literature, Moscow and Leningrad, 1950, Gordon and Breach, Science publishers, Library of Congress, 1961. [MR: 186291] [Google Scholar]
  24. S. WOLLMAN, The use of a heat operator in an existence theory problem of the Vlasov equation, TTSP, 14 (1985), pp. 567-593. [MR: 813498] [Zbl: 0595.76126] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you