Free Access
Issue
ESAIM: M2AN
Volume 24, Number 2, 1990
Page(s) 265 - 304
DOI https://doi.org/10.1051/m2an/1990240202651
Published online 31 January 2017
  1. I. BABUSKA and M. SURI, The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990). [Google Scholar]
  2. I. BABUSKA and M. R. DORR, Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. [MR: 623044] [Zbl: 0487.65058] [Google Scholar]
  3. I. BABUSKA andM. SURI, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. [MR: 899702] [Zbl: 0637.65103] [Google Scholar]
  4. I. BABUSKA and M. SURI, 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. [EuDML: 193500] [MR: 896241] [Zbl: 0623.65113] [Google Scholar]
  5. I. BABUSKA and B. A. SZABO, Lectures notes on finite element analysis, In préparation. [Zbl: 0792.73003] [Google Scholar]
  6. I. BABUSKA,B. A. SZABOand I. N. KATZ, The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. [MR: 615529] [Zbl: 0487.65059] [Google Scholar]
  7. I. BERGH and J. LOFTSTROM, Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. [Zbl: 0344.46071] [Google Scholar]
  8. C. K. CHUI, Multivariate Splines, SIAM, Philadelphia, 1988. [MR: 1033490] [Zbl: 0687.41018] [Google Scholar]
  9. M. R. DORR, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. [MR: 765514] [Zbl: 0572.65074] [Google Scholar]
  10. M. R. DORR, The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. [MR: 821906] [Zbl: 0617.65109] [Google Scholar]
  11. I. S. GRADSHTEYNand I. M. RYZHIK, Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. [MR: 197789] [Zbl: 0521.33001] [Google Scholar]
  12. W. GUI and I. BABUSKA, The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. [EuDML: 133131] [MR: 861522] [Zbl: 0614.65089] [Google Scholar]
  13. B. GUO and I. BABUSKA, The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. [Zbl: 0634.73058] [Google Scholar]
  14. B. GUO andI. BABUSKA, The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. [Zbl: 0634.73059] [Google Scholar]
  15. G. H. HARDY,T. E. LITTLEWOOD andG. POLYA, Inequalitie, Cambridge University Press, Cambridge, 1934. [Zbl: 0010.10703] [JFM: 60.0169.01] [Google Scholar]
  16. I. N. KATZ and D. W. WANG, The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. [MR: 811185] [Zbl: 0602.65086] [Google Scholar]
  17. V. A. KONDRATEV, Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. [MR: 226187] [Zbl: 0194.13405] [Google Scholar]
  18. V. A. KONDRATEV andO. A. OLEINIK, Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. [Zbl: 0548.35018] [Google Scholar]
  19. E. REISSNER, A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. [Zbl: 0535.73039] [Google Scholar]
  20. E. REISSNER, Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11. [Google Scholar]
  21. E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. [MR: 290095] [Zbl: 0207.13501] [Google Scholar]
  22. P. K. SUETIN, Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). [MR: 548727] [Zbl: 0449.33001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you