Free Access
Volume 24, Number 5, 1990
Page(s) 557 - 611
Published online 31 January 2017
  1. [BS] I. BABUSKA &M. SURI, The h-p Version of the Finite Element Method with Quasiuniform Meshes, Modél. Math. et Anal. Numér. 21 (1987), 199-238. [EuDML: 193500] [MR: 896241] [Zbl: 0623.65113] [Google Scholar]
  2. [BCaM] C. BERNARDI,C. CANUTO & Y. MADAY, Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem. SIAM J. Numer. Anal. 25 (1988), 1237-1271. [MR: 972452] [Zbl: 0666.76055] [Google Scholar]
  3. [BCMM] C. BERNARDI, C. CANUTO,Y. MADAY & B. MÉTIVET, Single-Grid Spectral Collocation for the Navier-Stokes Equations, IMA J. Numer. Anal. 9 (1990). [MR: 1053874] [Zbl: 0701.76034] [Google Scholar]
  4. [BCoM] C. BERNARDI,G. COPPOLETTA &Y. MADAY, Some Spectral Approximations of Multidimensional Fourth-Order Problems, en préparation. [Zbl: 0754.65088] [Google Scholar]
  5. [BM1] C. BERNARDI &Y. MADAY, Properties of some Weighted Sobolev Spaces, and Application to Spectral Approximations, SIAM J. Numer. Anal. 26 (1989), 769-829. [MR: 1005511] [Zbl: 0675.65114] [Google Scholar]
  6. [BM2] C. BERNARDI & Y. MADAY, A Collocation Method over Staggered Grids for the Stokes Problem, Int. J. for Num. Methods in Fluids 8 (1988), 537-557. [MR: 938418] [Zbl: 0665.76037] [Google Scholar]
  7. [BM3] C. BERNARDI &Y. MADAY, Some Spectral Approximations of One-Dimensional Fourth-Order Problems, à paraître dans J. Approx. Theory. [Google Scholar]
  8. [BMM] C. BERNARDI,Y. MADAY & B. MÉTIVET, Calcul de la pression dans la résolution spectrale du problème de Stokes, La Recherche Aérospatiale 1 (1987), 1-21. [MR: 904608] [Zbl: 0642.76037] [Google Scholar]
  9. [BMP] C. BERNARDI, Y. MADAY &A. T. PATERA, A new nonconforming approach to domain decomposition : the mortar element method, à paraître dans Nonlinear P. D. E.s and their Applications, College de France Seminar, H. Brezis & J.-L. Lions eds. (1990). [Zbl: 0797.65094] [Google Scholar]
  10. [BMS] C. BERNARDI, Y. MADAY &G. SACCHI LANDRIANI, Non Conforming Matching Conditions for Coupling Spectral and Finite Element Methods, J. Applied Numer. Math. 6 (1989-1990), 65-84. [MR: 1045019] [Zbl: 0684.65099] [Google Scholar]
  11. [B] F. BREZZI, On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrange Multipliers, RAIRO Anal. Numer. 8, R2 (1974), 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  12. [CF] C. CANUTO &D. FUNARO, The Schwarz Algorithm for Spectral Methods, SIAM J. Numer. Anal. 25 (1988), 24-40. [MR: 923923] [Zbl: 0642.65076] [Google Scholar]
  13. [CHQZ] C. CANUTO,M. Y. HUSSAINI,A. QUARTERONI & T. A. ZANG, Spectral Methods in Fluid Dynamics. Springer-Verlag (1987). [MR: 917480] [Zbl: 0658.76001] [Google Scholar]
  14. [CQ] C. CANUTO &A. QUARTERONI, Approximation Results for Orthogonal Polynomials in Sobolev Spaces, Math. of Comp. 38 (1982), 67-86. [MR: 637287] [Zbl: 0567.41008] [Google Scholar]
  15. [DR] P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press (1985). [MR: 760629] [Zbl: 0537.65020] [Google Scholar]
  16. [GR] V. GIRAULT & P.-A. RAVIART, Fintie Element Methods for Navier-Stokes Equations Theory and Algorithms, Springer-Verlag (1986). [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  17. [G] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman (1985). [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
  18. [H] Handbook of Mathematical Functions,M. Abramowitz &I. A. Stegun eds., Dover Publications (1970). [Google Scholar]
  19. [JV] S. JENSEN &M. VOGELIUS, Divergence Stability in Connection with the p-Version of the Finite Element Method, soumis à Numer. Math. [EuDML: 193614] [Zbl: 0717.65085] [Google Scholar]
  20. [LM] J.-L. LIONS & E. MAGENES, Problèmes aux limites non homogènes et applications, Volume 1, Dunod (1968). [MR: 247243] [Zbl: 0165.10801] [Google Scholar]
  21. [M] Y. MADAY, Analysis of Spectral Operators in One-Dimensional Domains, Math. of Comp. (1990). [MR: 1035939] [Zbl: 0745.41033] [Google Scholar]
  22. [Mé] B. METIVET, Résolution des équations de Navier-Stokes par méthodes spectrales, These, Université Pierre et Marie Curie (1987). [Google Scholar]
  23. [N] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson (1967). [MR: 227584] [Google Scholar]
  24. [S] G. SACCHI LANDRIANI, Communication personnelle. [Google Scholar]
  25. [SV] G. SACCHI LANDRIANI & H. VANDEVEN, Polynomial Approximation of Divergence-Free Functions, Math. of Comp. 52 185 (1989), 103-130. [MR: 971405] [Zbl: 0694.41009] [Google Scholar]
  26. [Sj] SHEN JIE, Résolution numérique des équations de Stokes et de Navier-Stokes par les méthodes spectrales, These, Universite Paris Sud (1987). [Google Scholar]
  27. [V] H. VANDEVEN, Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodiques/non périodique, Model. Math. et Anal. Num. 23 (1989), 649-688. [EuDML: 193584] [MR: 1025077] [Zbl: 0681.76039] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you