Free Access
Issue
ESAIM: M2AN
Volume 24, Number 5, 1990
Page(s) 651 - 680
DOI https://doi.org/10.1051/m2an/1990240506511
Published online 31 January 2017
  1. I. AGANOVIC,Z. TUTEK, A justification of the one-dimensional model of elastic beam. Math. Methods in Applied Sci., 8, 1986, pp. 1-14. [MR: 870989] [Zbl: 0603.73056]
  2. A. BERMUDEZ,J. M. VIAÑO, Une justification des équations de la thermoélasticite des poutres à section variable par des méthodes asymptotiques, RAIRO, Analyse Numérique, 18, 1984, pp. 347-376. [EuDML: 193437] [MR: 761673] [Zbl: 0572.73053]
  3. F. BREZZI, On the existence uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO, Analyse Numérique, Sér Rouge, 2, 1974, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  4. D. CAILLERIE, The effect of a thin inclusion of high rigidity in a elastic body, Math. Methods in Applied Sci., 2, 1980, pp 251-270. [MR: 581205] [Zbl: 0446.73014]
  5. P. G. CIARLET, A justification of the von Karman equations. Arch. Rat. Mcch. Anal., 73, 1980, pp 349-389 [MR: 569597] [Zbl: 0443.73034]
  6. P. G. CIARLET, « Recent progress in the two-dimensional approximation of three-dimensional plate models in nonlinear elasticity» In Numerical Approximation of Partial Differential Equations E. L. Ortiz, Editor, North-Holland, Amsterdam, 1987, pp 3-19. [MR: 899776] [Zbl: 0612.73060]
  7. P. G. CIARLET, P. DESTUYNDER, A justification of the two dimensional linear plate model. J. Mécanique, 18, 1979, pp 315-344. [MR: 533827] [Zbl: 0415.73072]
  8. P. G. CIARLET,P. DESTUYNDER, A justification of a nonlinear model in place theory. Comp. Methods Appl. Mech. Engrg. 17/18, 1979, pp. 227-258. [MR: 533827] [Zbl: 0405.73050]
  9. A. CIMETIÈRE, G. GEYMONAT,H. LEDRET, A. RAOULT,Z. TUTEK, Une dérivation d'un modèle non lineaire de poutres à partir de l'élasticite tridimensionelle. C. R. A. S., tome 302, Sér. I, n° 19, 1986, pp. 697-700. [MR: 847757] [Zbl: 0593.73046]
  10. P. DESTUYNDER, Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thèse, Univ. P. et M. Curie, Paris, 1980.
  11. P. DESTUYNDER, Une théorie asymptotique de plaque minces en élasticité lineaire. Masson, Paris, 1986. [MR: 830660] [Zbl: 0627.73064]
  12. G. DUVAUT,J. L. LIONS, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976. [MR: 521262] [Zbl: 0331.35002]
  13. C. DYM, I. SHAMES, Solid Mechanics, A variational approch. McGraw-Hill, New York, 1973.
  14. B. M. FRAEJIS DE VEUBEKE, A course in elasticity Applied Mathematical Sciences, Vol. 29, Springer-Verlag, Berlin, 1979. [MR: 533738] [Zbl: 0419.73001]
  15. Y. C. FUNG, Foundations of Solid Mechanics Prentice-Hall, Englewood Cliffs, N. J., 1965.
  16. I. HLAVACEK,J. NECAS, Mathematical Theory of Elastic and Elasto-Plastic Bodies; An Introduction Elsevier, New York, 1981. [MR: 600655] [Zbl: 0448.73009]
  17. J. L. LIONS, Perturbations singulières dans les problèmes aux limites et en contrôle optimal Lect. Notes in Math., 323, Springer-Verlag, Berlin, 1973. [MR: 600331] [Zbl: 0268.49001]
  18. R. D. MINDLIN, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech., 18, 1951, pp. 31 38. [Zbl: 0044.40101]
  19. A. RAOULT, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation. Annali di Mathematica Pura ad Applicata, 139, 1985, pp. 361-400. [MR: 798182] [Zbl: 0596.73033]
  20. A. RIGOLOT, Sur une théorie asymptotique des poutres. Thèse, Univ. P. et M. Curie, Paris, 1976. [Zbl: 0257.73013]
  21. A. RIGOLOT, Sur une théorie asymtotique des poutres. J. Mécanique, 11, 1972, pp. 673-703. [MR: 368552] [Zbl: 0257.73013]
  22. A. RIGOLOT, Sur la déformation due à l'effort tranchant dans les poutres droites élastiques. Ann. Inst. Techn. Bât. Trav. Publ., n° 363, 1978, pp 34-52.
  23. S. P. TIMOSHENKO, On the correction for shear of the differential equation for transverse vibration of prismatic bars. Phil Mag, Ser 6, 41, 1921, pp 744-746.
  24. L. TRABUCHO,J. M. VIANO, « Derivation of generalized models for linear elastic beams by asymptotic expansion methods » In Applications of Multiple Scaling to Mechanics (P. G. Ciarlet and E. Sanchez-Palencia, Editors), Masson, Paris, 1987, pp 302-315. [MR: 902000] [Zbl: 0646.73024]
  25. L. TRABUCHO,J. M. VIANO, Dérivation de modèles généralisés de poutres en élasticité par méthode asymptotique. C. R. Acad. Sc. Paris, tome 304, Ser I, n° 11, 1987. [MR: 886729] [Zbl: 0627.73015]
  26. L. TRABUCHO,J. M. VIANO, Existence and characterization of higher order terms in an asymptotic expansion method for linearized elastic beams. J. Asymptotic Analysis, 2, 1989, pp. 223-255. [MR: 1020349] [Zbl: 0850.73126]
  27. L. TRABUCHO, J. M. VIAÑO, A dérivation of generalized Saint Venat's torsion theory from three dimensional elasticity by asymptotic expansion methods. J. Applicable Analysis, 31, 1988, pp 129-148. [MR: 1017507] [Zbl: 0637.73003]
  28. L. TRABUCHO, J. M. VIAÑO, A justification of Vlasov s bending-torsion theory in elastic beams (to appear). [Zbl: 0850.73126]
  29. L. TRABUCHO, J. M. VIAÑO, Critical cross sections in Timoshenko's beam theory (to appear). [Zbl: 0777.73028]
  30. J. M. VIAÑO, Contribution à l'étude des modèles bidimensionels en thermoélasticité de plaques d'épaisseur non constante. Thèse, Univ. P. et M. Curie, Paris, 1983.
  31. J. M. VIAÑO, « Generalizacion y justificacion de modelos unilaterales en vigas elàsticas sobre fundacion » In. Actas del VIII C. E. D. Y. A., Santander, España, 1985.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you