Free Access
Volume 24, Number 6, 1990
Page(s) 737 - 764
Published online 31 January 2017
  1. D. N. ARNOLD, L. R. SCOTT and M. VOGELIUS, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Annali Scuola Norm. Sup. Pisa, Serie 4, 15 (1988), pp. 169-192. [EuDML: 84028] [MR: 1007396] [Zbl: 0702.35208] [Google Scholar]
  2. I. BABUŠKA, Error-bounds for the finite element method. Numerische Mathematik, 16 (1971), pp. 322-333. [EuDML: 132037] [MR: 288971] [Zbl: 0214.42001] [Google Scholar]
  3. I. BABUŠKA, B. A. SZABO and I. N. KATZ, The p-version of the finite element method. SIAM J. Numer. Anal., 18 (1981), pp. 515-545. [MR: 615529] [Zbl: 0487.65059] [Google Scholar]
  4. M. BERCOVIER and O. PIRONNEAU, Error estimates for the finite element method solution of the Stokes problem in the primitive variables. Numerische Mathematik, 33 (1979), pp. 211-224. [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058] [Google Scholar]
  5. J. BOLAND and R. A. NICOLAIDES, On the stability of Bilinear-Constant Velocity-Pressure Finite Elements. Numerische Mathematik, 44 (1984), pp. 219-222. [EuDML: 132930] [MR: 753954] [Zbl: 0544.76030] [Google Scholar]
  6. J. BOLAND and R. A. NICOLAIDES, Stable and semistable low order finite elements for viscous flows. SIAM J. Numer. Anal., 22 (1985), pp. 474-492. [MR: 787571] [Zbl: 0578.65123] [Google Scholar]
  7. F. BREZZI, On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers, RAIRO 8 (1974), pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  8. C. CANUTO, Y. MADAY and A. QUARTERONI, Combined Finite Element and Spectral approximation of the Navier-Stokes equations. Numerische Mathematik, 44 (1984), pp. 201-217. [EuDML: 132929] [MR: 753953] [Zbl: 0614.76021] [Google Scholar]
  9. V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, 1986. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  10. D. GOTTLIEB and S. ORSZAG, Numerical Analysis of Spectral Methods : Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, 26. SIAM, 1977. [MR: 520152] [Zbl: 0412.65058] [Google Scholar]
  11. P. GRISVARD, Elliptic Problems in Nonsmooth Domains. Pitman, 1985. [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
  12. C. JOHNSON and J. PITKÄRANTA, Analysis of some mixed finite element methods related to reduced integration. Math, of Comp., 38 (1982), pp. 375-400. [MR: 645657] [Zbl: 0482.65058] [Google Scholar]
  13. R. B. KELLOGG and J. E. OSBORN, A regularity result for the Stokes problem in a convex polygon. J. Functional Analysis, 21 (1976), pp. 397-431. [MR: 404849] [Zbl: 0317.35037] [Google Scholar]
  14. N. N. LEBEDEV, Special Functions and Their Applications, Prentice-Hall, 1965. [MR: 174795] [Zbl: 0131.07002] [Google Scholar]
  15. Y. MADAY, Analysis of spectral projectors in multi-dimensional domains. [Google Scholar]
  16. E. M. RONQUIST, Optimal spectral element method for the unsteady three-dimensional incompressible Navier-Stokes equations. Ph. D. thesis, M.I.T., 1988. [Google Scholar]
  17. G. SACCHI LANDRIANI, Spectral tau approximation of the two-dimensional Stokes problem. Numer. Math., 52 (1988), pp. 683-699. [EuDML: 133260] [MR: 946383] [Zbl: 0629.76037] [Google Scholar]
  18. L. R. SCOTT and M. VOGELIUS, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Modelling Num. Anal., 19 (1985), pp. 111-143. [EuDML: 193439] [MR: 813691] [Zbl: 0608.65013] [Google Scholar]
  19. L. R. SCOTT and M. VOGELIUS, Conforming Finite Element Methods for incompressible and nearly incompressible continua. Lectures in Applied Mathematics, 22, pp. 221-244, AMS, 1985. [MR: 818790] [Zbl: 0582.76028] [Google Scholar]
  20. M. SURI, On the stability and convergence of higher order mixed finite element methods for second order elliptic problems. Math. Comput., 54 (1990), pp. 1-19. [MR: 990603] [Zbl: 0687.65101] [Google Scholar]
  21. B. A. SZABO, I. BABUŠKA and B. K. CHAYAPATHY, Stress computations for nearly incompressible materials. Int. J. Numer. Methods Eng., 28 (1990), pp. 2175-2190. [Zbl: 0718.73083] [Google Scholar]
  22. R. VERFÜHRT, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO, Numer. Anal., 18 (1984), pp 175-182. [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037] [Google Scholar]
  23. M. VOGELIUS, An analysis of the p-Version of the Finite Element Method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numerische Mathematik, 41 (1983), pp. 39-53. [EuDML: 132838] [MR: 696549] [Zbl: 0504.65061] [Google Scholar]
  24. M. VOGELIUS, A right inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-Version of the Finite Element Method. Numerische Mathematik, 41 (1983), pp. 19-37. [EuDML: 132837] [MR: 696548] [Zbl: 0504.65060] [Google Scholar]
  25. C. BERNARDI, Y. MADAY and B. METIVET, Spectral approximation of the periodic-nonperiodic Navier-Stokes equations. Numerische Mathematik, 51 (1987), pp. 655-700. [EuDML: 133219] [MR: 914344] [Zbl: 0583.65085] [Google Scholar]
  26. C. BERNARDI, Y. MADAY and B. METIVET, Calcul de la pression dans la résolution spectrale du problème de Stokes. La Recherche Aérospatiale, 1 (1987), pp. 1-21. [MR: 904608] [Zbl: 0642.76037] [Google Scholar]
  27. M. SURI, The p-version of the finite element method for elliptic equations of order 2 l. M2AN, 24 (1990), pp. 265-304. [EuDML: 193597] [MR: 1052150] [Zbl: 0711.65094] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you