Free Access
Volume 25, Number 1, 1991
Page(s) 1 - 30
Published online 31 January 2017
  1. M. ABRAMOWITZ, I. STEGUN, Handbook of mathematical functions Dover publications (1968) [Google Scholar]
  2. A. R. ADAMS, Sobolev spaces Academic Press (1975) [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  3. A. BAMBERGER, A. S. BONNET, Calcul des modes guidés d'une fibre optique Analyse numérique Report n° 143, CMAP, Ecole Polytechnique (1986) [Google Scholar]
  4. A. BAMBERGER, Y. DERMENJIAN, P. JOLY, « Mathematical Analysis of the Propagation of Elastic Guided Waves in Heterogeneous Media », INRIA Report n° 1013 (1989) to appear in Journal of Differential Equations (1990) [MR: 1079862] [Zbl: 0714.35045] [Google Scholar]
  5. A. BAMBERGER, P. JOLY, M. KERN, Etude mathématique des modes élastiques guidés par l'extérieur d'une cavité cylindrique de section arbitraire Report n° 650, INRIA (1987) [Zbl: 0617.73029] [Google Scholar]
  6. A. BAMBERGER, P. JOLY, M. KERN, Propagation d'ondes élastiques guidées par la surface d'une cavité cylindrique de section arbitraire CRAS, Paris, série I, t 504, n° 3, pp 59-62 (1987) [MR: 878826] [Zbl: 0617.73029] [Google Scholar]
  7. M. BIOT, Propagation of elastic waves in a liquid filled cylindrical bore surrounded by an elastic solid J Appl Physics, 24, pp 515-521 (1953) [MR: 55893] [Zbl: 0053.31804] [Google Scholar]
  8. A. BOSTROM, A. D. BURDEN, Propagation of elastic surface waves and their excitation by a point force J Acoust Soc Amer, 72, pp 998-1004 (1982) [Google Scholar]
  9. A. D. BURDEN, The propagation of elastic surface waves along cylindrical cavities of general cross section Wave Motion, 7, pp 153-168 (1985) [Zbl: 0553.73015] [Google Scholar]
  10. R. COURANT, D. HILBERT, Methods of Mathematical Physics. Vol. I, Wiley (1962). [MR: 1013360] [Zbl: 0729.00007] [Google Scholar]
  11. Y. DERMENJIAN, J. C. GUILLOT, Scattering of elastic waves in a perturbed isotropic half-space with a free boundary. The limiting absorption principle. Report n° 491, INRIA (1986). [Zbl: 0647.73011] [Google Scholar]
  12. N. DUNFORD, J. T. SCHWARTZ, Linear operators. Vol. II, Wiley (1963). [Google Scholar]
  13. P. JOLY, Analyse numérique des ondes de Rayleigh. 3rd cycle Thesis, University Paris IX (1983). [Google Scholar]
  14. P. E. LAGASSE, Higher order finite element analysis of topographic guides supporting elastic surface waves. J. Acoust. Soc. Amer., 53, pp. 1116-1122 (1973). [Google Scholar]
  15. P. E. LAGASSE, I. M. MASON, E. A. ASH, Acoustic surface wave guides. Analysis and assessment. IEEE Trans. Microwave Theory Tech. 21, pp. 225-236 (1973). [Google Scholar]
  16. D. MARCUSE, Theory of dielectric optical waveguides. Academic Press (1974). [Google Scholar]
  17. J. MIKLOWITZ, The theory of elastic waves and waveguides. North-Holland (1980). [MR: 515886] [Zbl: 0565.73025] [Google Scholar]
  18. I. A. MINDLIN, Free elastic waves on the surface of a tube of infinite thickness. J. Appl. Math. Mech., 27, pp. 823-828 (1963). [Zbl: 0127.41502] [Google Scholar]
  19. J. A. MORRISON, Propagation of high frequency surface waves along cylinders of general cross section. J. Math. Phys., 16, pp. 1786-1794 (1975). [MR: 381436] [Zbl: 0309.73025] [Google Scholar]
  20. J. A. NITSCHE, On Korn's second inequality. RAIRO Analyse Numérique, 15, pp. 237-248 (1981). [EuDML: 193380] [MR: 631678] [Zbl: 0467.35019] [Google Scholar]
  21. Lord RAYLEIGH, On waves propagating along the plane surface of an elastic solid. Proc. London Math. Soc., 17, p. 411 (1885). [JFM: 17.0962.01] [Google Scholar]
  22. M. REED, B. SIMON, Methods of modern mathematical physics. Academic Press (1981). [Zbl: 0459.46001] [Google Scholar]
  23. F. RELLICH, Uber das asymptotiche Verhalten der Lösungen von Δu + ku = 0 in unendlichen Gebieten. Jber. Deutsche Math. Verein., 53, pp. 57-64 (1943). [EuDML: 146328] [MR: 17816] [Zbl: 0028.16401] [Google Scholar]
  24. F. SANTOSA, On the solution of elastodynamics problems for infinite cylinders. Report ONR/SRO, Cornell University (1986). [Google Scholar]
  25. M. SCHECHTER, Operator methods in quantum mechanics. North Holland (1981). [MR: 597895] [Zbl: 0456.47012] [Google Scholar]
  26. SCHULENBERGER, Elastic waves in the half-space R2+. J. Diff. Eq., 29, pp. 405-438 (1978). [MR: 507488] [Zbl: 0404.35066] [Google Scholar]
  27. J. WEIDMAN, Linear operators in Hilbert Spaces. Springer (1981). [Zbl: 0434.47001] [Google Scholar]
  28. C. H. WILCOX, Scattering theory for the d'Alembert equation in unbounded domains. Lecture Notes in Mathematics No. 442, Springer (1975). [MR: 460927] [Zbl: 0299.35002] [Google Scholar]
  29. L. O. WILSON, J. A. MORRISON, Propagation of high frequency elastic surface waves along cylinders of general cross section. J. Math. Phys., 16, pp. 1795-1805 (1975). [MR: 381437] [Zbl: 0313.73020] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you