Free Access
Volume 25, Number 1, 1991
Page(s) 129 - 149
Published online 31 January 2017
  1. F. BREZZI, W. W. HAGER, P. A. RAVIART, Error Estimates for the Finite Element Solution of Variational Inequalities. Numer. Math, 28, 431-443 (1977). [EuDML: 132496] [MR: 448949] [Zbl: 0369.65030] [Google Scholar]
  2. J. CÉA, Optimization : Théorie et Algorithmes. Dunod, Paris, 1971. [Zbl: 0211.17402] [MR: 298892] [Google Scholar]
  3. P. G. CïARLET, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  4. A. FRIEDMAN, Variational Principles and Free Boundary Problems. JohnWiley & Sons, 1982. [MR: 679313] [Zbl: 0564.49002] [Google Scholar]
  5. R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIÈRE, Numerical Analysis of Variational Inequalities. North Holland Publishing Company, 1981. [MR: 635927] [Zbl: 0463.65046] [Google Scholar]
  6. R. GLOWINSKI, Numerical Methods for Non-Linear Variational Problems. IRIA, Rocquencourt, 1979. [Google Scholar]
  7. J. J. KALKER, Survey of Wheel-Rail Rolling Contact Theory. Vehicie System Dynamics 5, 317-358 (1979). [Google Scholar]
  8. D. KlNDERLEHRER, G. STAMPACCHIA, An Introduction to Variational Inequalities and their Applications. Academie Press, New York, 1980. [MR: 567696] [Zbl: 0457.35001] [Google Scholar]
  9. L. D. LANDAU, E. M. LIFSHITZ, Theory of Elasticity. Pergamon Press, London, 1959. [MR: 106584] [Google Scholar]
  10. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod Gauthier-Villars, Paris, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  11. J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes; Vol. 1, Dunod, Paris, 1968. [Zbl: 0165.10801] [Google Scholar]
  12. J. T. ODEN, T. L. LIN, On The General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder. Comput. Math. Appl. Mech. Engrg. 57, 297-367 (1986). [MR: 858752] [Zbl: 0582.73113] [Google Scholar]
  13. J. PADOVAN, S. TOVICHAKCHAIKUL, I. ZEID, Finite Element Analysis of Steadily Moving Contact Fields. Computers & Structures 18, 191-200 (1984). [Zbl: 0523.73054] [Google Scholar]
  14. G. STRANG, G. FIX, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you