Free Access
Issue |
ESAIM: M2AN
Volume 25, Number 1, 1991
|
|
---|---|---|
Page(s) | 111 - 128 | |
DOI | https://doi.org/10.1051/m2an/1991250101111 | |
Published online | 31 January 2017 |
- O. AXELSSON, Error estimates over infinite intervals of some discretizations of evolution equations, BIT 24 (1984), 413-429 [MR: 764815] [Zbl: 0573.65038] [Google Scholar]
- I. BABUŠKA and W. C. RHEINBOLDT, Error estimates for adaptive finite element computations, SIAM J Numer Anal 75 (1978), 736-754 [MR: 483395] [Zbl: 0398.65069] [Google Scholar]
- M. BIETERMANN and I. BABUŠKA, An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type, J Comp Phys 63 (1986), 33-66 [MR: 832563] [Zbl: 0596.65084] [Google Scholar]
- K. ERICSSON, C. JOHNSON and V. THOMEE, Time discretization of par abolie problems by the discontinuons Galerkin method, M2AN 19 (1985), 611-643 [EuDML: 193462] [MR: 826227] [Zbl: 0589.65070] [Google Scholar]
- H. GAJEWSKI, K. ROGER and K. ZACHARIAS, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 [MR: 636412] [Zbl: 0289.47029] [Google Scholar]
- K. GROGER, Discrete-time Galerkin methods for nonlinear evolution equations, Math Nachr 84 (1978), 247-275 [MR: 518126] [Zbl: 0408.65071] [Google Scholar]
- C. JOHNSON, Y.-Y. NIE and V. THOMEE, An a posteriori error estimate for a backward Euler discretization of a parabolic problem, SIAM J Numer Anal, 27 (1990), 277-291 [MR: 1043607] [Zbl: 0701.65063] [Google Scholar]
- J. KAČUR, Method of Rothe in evolution equations, Teubner Leipzig, 1985 [MR: 834176] [Zbl: 0582.65084] [Google Scholar]
- J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications I, Dunod, Paris, 1968 [Zbl: 0165.10801] [Google Scholar]
- G. LIPPOLD, Adaptive approximation, ZAMM 67 (1987), 453-465 [MR: 919399] [Zbl: 0652.65062] [Google Scholar]
- M. LUSKIN and R. RANNACHER, On the smoothing property of the Galerkin method for par abolic equations, SIAM J Numer Anal 19 (1981), 93-113 [MR: 646596] [Zbl: 0483.65064] [Google Scholar]
- J. NEČAS, Application of Rothe's method to abstract parabohe equations, Czech Math J 24 (1974), 496-500 [EuDML: 12812] [MR: 348571] [Zbl: 0311.35059] [Google Scholar]
- P. A. RAVIART, Sur l'approximation de certaines équations d'évolution linéaires et non linéaires, J Math Pures Appl 46 (1967), 11-107, 109-183 [Zbl: 0198.49901] [Google Scholar]
- Th. REIHER, An adaptive method for linear parabolic partial differential equations, ZAMM 67 (1987), 557-565 [MR: 922260] [Zbl: 0637.65118] [Google Scholar]
- E. ROTHE, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann. 102 (1930), 650-670. [EuDML: 159400] [MR: 1512599] [JFM: 56.1076.02] [Google Scholar]
- J. M. SANZ-SERNA and G. VERWER, Stability and convergence in the PDE/stiff ODE interphase, Report NM-R8619, Centre for Mathematics and Computer Science Amsterdam, 1986. [Zbl: 0671.65078] [Google Scholar]
- V. THOMÉE andL. B. WAHLBIN, On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal. 12 (1975), 378-389. [MR: 395269] [Zbl: 0307.35007] [Google Scholar]
- M. F. WHEELER, An H-1 Galerkin method for a parabolic problem in a single space variable, SIAM J. Numer. Anal. 12 (1975), 803-817. [MR: 413556] [Zbl: 0331.65075] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.