Free Access
Issue
ESAIM: M2AN
Volume 25, Number 3, 1991
Page(s) 371 - 391
DOI https://doi.org/10.1051/m2an/1991250303711
Published online 31 January 2017
  1. F. BREZZI (1974) : On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., R2, 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  2. P. G. CIARLET (1980) : A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73, 349-389. [MR: 569597] [Zbl: 0443.73034]
  3. P. G. CIARLET, P. DESTUYNDER (1979) : A justification of the two-dimensional linear plate model. J. Mécanique 18, 315-344. [MR: 533827] [Zbl: 0415.73072]
  4. P. G. CIARLET, S. KESAVAN (1980) : Two dimensional approximations of three dimensional eigenvalues in plate theory. Comp. Methods Appl. Mech. Eng. 26, 149-172. [MR: 626720] [Zbl: 0489.73057]
  5. P. G. CIARLET, J.-C. PAUMIER (1986) : A justification of the Marguerre - von Kármán equations. Comp. mech. 1, 177-202. [Zbl: 0633.73069]
  6. P. DESTUYNDER (1980) Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université P. et M. Curie, Paris.
  7. P. DESTUYNDER (1981) Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO An. Num. 15, 331-369. [EuDML: 193386] [MR: 642497] [Zbl: 0479.73042]
  8. J.-L. LIONS (1973) Perturbation singulière dans les problèmes aux limites et en contrôle optimal. Lecture notes in maths 323, Berlin, Heidelberg, New-York : Springer. [MR: 600331] [Zbl: 0268.49001]
  9. J. C. PAUMIER (1985) Analyse de certains problèmes non linéaires, modèles de plaques et de coques. Thesis, Université P. et M. Curie
  10. J. C. PAUMIER (1990) Existence Theorems for Non Linear Elastic Plates with Periodic Boundary Conditions, Journal of Elasticity, 23, 233-252. [MR: 1074678] [Zbl: 0738.73038]
  11. A. RAOULT (1985) Constructiond'un modèle d'évolution de plaques, Annali di Matematica Pura et Applicata CXXXIX, 361-400. [MR: 798182] [Zbl: 0596.73033]
  12. K. O. FRIEDRICHS, R. F. DRESSLER (1961) A boundary-layer theory for elastic plates, Comm. Pure Appl. Maths. 14, 1-33. [MR: 122117] [Zbl: 0096.40001]
  13. A. L. GOLDENVEIZER Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech. 26, 668-686 (English translation J. Appl. Math. Mech. (1964), 1000-1025). [MR: 170523] [Zbl: 0118.41603]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you