Free Access
Issue
ESAIM: M2AN
Volume 26, Number 1, 1992
Topics in computer aided geometric design
Page(s) 211 - 232
DOI https://doi.org/10.1051/m2an/1992260102111
Published online 31 January 2017
  1. BABUSKA, B. A. SZABO & I. N. KATZ (1981), The p-version of the Finite Element Method, SIAM J. Numer. Anal, 18, pp. 515-545. [MR: 615529] [Zbl: 0487.65059]
  2. A. BALL (1984), Reparametrization and Its Application in CAGD, Internat. J. Numer. Methods Engrg., Vol. 20, pp. 197-216, John Wiley & Sons. [Zbl: 0539.65005]
  3. P. G. CIARLET (1982), Introduction à l'Analyse Numérique Matricielle et à l'Optimisation, Masson, Paris, English translation (1989), Cambridge University Press. [Zbl: 0488.65001]
  4. L. DANNENBERG, H. NOWACKI (1985), Approximate Conversion of Surface Representations with Polynomials Bases, CAGD, 2, pp. 123-132. [MR: 828540] [Zbl: 0577.65005]
  5. G. FARIN (1988), Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, Inc., Boston. [MR: 974109] [Zbl: 0694.68004]
  6. R. J. GOULT (1990), Parametric Curves and Surface Approximation, in Mathematics of Surfaces III, éd. Handscomb, D. C, Oxford University Press. [Zbl: 0718.41025]
  7. G. HÖLZLE (1983), Knot Placement for Piecewise Polynomial Approximation of Curves, Comput. Aided Design, 15, pp. 295-296.
  8. J. HOSCHEK (1985), Offset Curves in the Plane, Comput. Aided Design, 4, pp. 59-66. [MR: 898023] [Zbl: 0645.65008]
  9. J. HOSCHEK (1987), Approximation Conversion of Spline Curves, Comput. Aided Geom. Design, 17, pp. 77-82. [MR: 898023] [Zbl: 0645.65008]
  10. J. HOSCHEK (1988), Spline Approximation of Offset Curves, Comput. Aided Geom. Design, 5, pp. 33-40. [MR: 945304] [Zbl: 0647.65007]
  11. J. HOSCHEK (1988), Intrinsic Parametrization for Approximation, Comput. Aided Geom. Design, 5, pp. 27-31. [MR: 945303] [Zbl: 0644.65011]
  12. J. HOSCHEK, F. J. SCHNEIDER, P. WASSUM (1988), Optimal Approximation Conversion of Spline Surfaces, Comput. Aided Design, 20, pp. 457-483. [Zbl: 0682.65005]
  13. M. A. LACHANCE (1988), Chebyshev Economisation for Parametric Surfaces, Comput. Aided Geom. Design, 5, pp. 195-208. [MR: 959604] [Zbl: 0709.65012]
  14. L. D. LANDAU, E. M. LIFSHITZ (1959), Mechanics, Pergamon Press, Oxford, Ed. 3. [Zbl: 0081.22207] [MR: 475051]
  15. N. LUSCHER (1988), The Bernstein-Bézier Technique in the Finite Element Method, Exemplary for the Univariate Case, Technical Report from the University of Braunschweig.
  16. H. NOWACKI, L. DINGYUAN, L. XINMIN (1990), Fairing Bézier Curves With Constraints, Comput. Aided Geom. Design, 7, pp. 43-55. [MR: 1074598] [Zbl: 0755.65018]
  17. C. ZIENKIEWICZ (1977), The Finite Element Method in Engineering Science, McGraw-Hill, London. [Zbl: 0237.73071]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you