Free Access
Volume 26, Number 1, 1992
Topics in computer aided geometric design
Page(s) 211 - 232
Published online 31 January 2017
  1. BABUSKA, B. A. SZABO & I. N. KATZ (1981), The p-version of the Finite Element Method, SIAM J. Numer. Anal, 18, pp. 515-545. [MR: 615529] [Zbl: 0487.65059] [Google Scholar]
  2. A. BALL (1984), Reparametrization and Its Application in CAGD, Internat. J. Numer. Methods Engrg., Vol. 20, pp. 197-216, John Wiley & Sons. [Zbl: 0539.65005] [Google Scholar]
  3. P. G. CIARLET (1982), Introduction à l'Analyse Numérique Matricielle et à l'Optimisation, Masson, Paris, English translation (1989), Cambridge University Press. [Zbl: 0488.65001] [Google Scholar]
  4. L. DANNENBERG, H. NOWACKI (1985), Approximate Conversion of Surface Representations with Polynomials Bases, CAGD, 2, pp. 123-132. [MR: 828540] [Zbl: 0577.65005] [Google Scholar]
  5. G. FARIN (1988), Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, Inc., Boston. [MR: 974109] [Zbl: 0694.68004] [Google Scholar]
  6. R. J. GOULT (1990), Parametric Curves and Surface Approximation, in Mathematics of Surfaces III, éd. Handscomb, D. C, Oxford University Press. [Zbl: 0718.41025] [Google Scholar]
  7. G. HÖLZLE (1983), Knot Placement for Piecewise Polynomial Approximation of Curves, Comput. Aided Design, 15, pp. 295-296. [Google Scholar]
  8. J. HOSCHEK (1985), Offset Curves in the Plane, Comput. Aided Design, 4, pp. 59-66. [MR: 898023] [Zbl: 0645.65008] [Google Scholar]
  9. J. HOSCHEK (1987), Approximation Conversion of Spline Curves, Comput. Aided Geom. Design, 17, pp. 77-82. [MR: 898023] [Zbl: 0645.65008] [Google Scholar]
  10. J. HOSCHEK (1988), Spline Approximation of Offset Curves, Comput. Aided Geom. Design, 5, pp. 33-40. [MR: 945304] [Zbl: 0647.65007] [Google Scholar]
  11. J. HOSCHEK (1988), Intrinsic Parametrization for Approximation, Comput. Aided Geom. Design, 5, pp. 27-31. [MR: 945303] [Zbl: 0644.65011] [Google Scholar]
  12. J. HOSCHEK, F. J. SCHNEIDER, P. WASSUM (1988), Optimal Approximation Conversion of Spline Surfaces, Comput. Aided Design, 20, pp. 457-483. [Zbl: 0682.65005] [Google Scholar]
  13. M. A. LACHANCE (1988), Chebyshev Economisation for Parametric Surfaces, Comput. Aided Geom. Design, 5, pp. 195-208. [MR: 959604] [Zbl: 0709.65012] [Google Scholar]
  14. L. D. LANDAU, E. M. LIFSHITZ (1959), Mechanics, Pergamon Press, Oxford, Ed. 3. [Zbl: 0081.22207] [MR: 475051] [Google Scholar]
  15. N. LUSCHER (1988), The Bernstein-Bézier Technique in the Finite Element Method, Exemplary for the Univariate Case, Technical Report from the University of Braunschweig. [Google Scholar]
  16. H. NOWACKI, L. DINGYUAN, L. XINMIN (1990), Fairing Bézier Curves With Constraints, Comput. Aided Geom. Design, 7, pp. 43-55. [MR: 1074598] [Zbl: 0755.65018] [Google Scholar]
  17. C. ZIENKIEWICZ (1977), The Finite Element Method in Engineering Science, McGraw-Hill, London. [Zbl: 0237.73071] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you