Free Access
Issue
ESAIM: M2AN
Volume 26, Number 2, 1992
Page(s) 289 - 307
DOI https://doi.org/10.1051/m2an/1992260202891
Published online 31 January 2017
  1. R. GLOWINSKI, J. PERIAUX and Q. V. DIHN, Domain Decomposition Methods for Nonlinear Problems in Fluid Dynamics, INRIA report 147, July 1982. [Zbl: 0505.76068] [Google Scholar]
  2. R. GLOWINSKI and M. F. WHEELER, Domam Decomposition and Mixed Finite Element Methods for Elliptic Problems, Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988. [MR: 972516] [Zbl: 0661.65105] [Google Scholar]
  3. T. F. CHAN, Analysis of preconditioners for domain decomposition, SIAM J. Numer. Anal., 24/2, 1987. [MR: 881372] [Zbl: 0625.65100] [Google Scholar]
  4. T. F. CHAN and D. C. RESASCO, A Framework for Analysis and Construction fo Domain Decomposition Preconditioners, Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988. [Zbl: 0658.65092] [Google Scholar]
  5. L. SONKE, P. LE QUÉRE and TA PHUOC LOC, Domain decomposition and multigradient methods for the Navier-Stokes equations, Proc. 6th. International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, U.K. July 1989. [Zbl: 0728.76075] [Google Scholar]
  6. K. MILLER, Numerical analogs to the Schwarz alternating procedure, Numer. Math. 1965. [EuDML: 131641] [MR: 177520] [Zbl: 0154.41201] [Google Scholar]
  7. L. SONKÉ, Solution algorithmique de certaines équations aux dérivées partielles non symétriques : application aux équations de Navier-Stokes, in preparation. [Google Scholar]
  8. R. DAUTRAY and J. L. LIONS, Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris 1985. [Zbl: 0642.35001] [Google Scholar]
  9. R. TEMAM, Navier-Stokes equations, North Holland, 1977. [MR: 769654] [Zbl: 0383.35057] [Google Scholar]
  10. L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1957. [MR: 209834] [Zbl: 0078.11003] [Google Scholar]
  11. P. S. VASSILEVSKI, Poincaré-Steklov operators for elliptic difference problems, C. R, Acad. Bulgare Sci., 38, no. 5, 543-546, 1985. [MR: 799809] [Zbl: 0592.65065] [Google Scholar]
  12. R. GLOWINSKI, Numerical Methods for nonlinear variational problems, Springer, 1984. [MR: 737005] [Zbl: 0536.65054] [Google Scholar]
  13. C. G. SPEZIALE, On the Advantages of the Vorticity-Velocity Formulation of the Equations of Fluid Dynamics, J. Comp. Phys. 73, 476-480, 1987. [Zbl: 0632.76049] [Google Scholar]
  14. H. F. FASEL, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flows. Approximation Methods For Navier-Stokes Problem, Proc. Paderborn, Germany, 177-191, Springer-Verlag, 1979. [MR: 565996] [Zbl: 0463.76040] [Google Scholar]
  15. L. SONKÉ, P. LE QUÉRÉ and TA PHUOC LOC, Domain decomposition and Velocity-vorticity formulation for fluids flows in multiply-connected regions, in preparation. [Zbl: 0728.76075] [Google Scholar]
  16. J. M. VANEL, R. PEYRET and P. BONTOUX, A pseudo-spectral solution of vorticity-stream function equation using the influence matrix technique, Numer. Meth. Fluid Dynamics II, 463-472, Clarendon Press, Oxford, 1986. [Zbl: 0606.76030] [Google Scholar]
  17. R. PEYRET and T. D. TAYLOR, Computational methods for fluid flow, Springer-Verlag, 1985. [MR: 770204] [Zbl: 0717.76003] [Google Scholar]
  18. P. A. RAVIART and J. M. THOMAS, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris, 1984. [Zbl: 0561.65069] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you