Free Access
Volume 26, Number 2, 1992
Page(s) 289 - 307
Published online 31 January 2017
  1. R. GLOWINSKI, J. PERIAUX and Q. V. DIHN, Domain Decomposition Methods for Nonlinear Problems in Fluid Dynamics, INRIA report 147, July 1982. [Zbl: 0505.76068]
  2. R. GLOWINSKI and M. F. WHEELER, Domam Decomposition and Mixed Finite Element Methods for Elliptic Problems, Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988. [MR: 972516] [Zbl: 0661.65105]
  3. T. F. CHAN, Analysis of preconditioners for domain decomposition, SIAM J. Numer. Anal., 24/2, 1987. [MR: 881372] [Zbl: 0625.65100]
  4. T. F. CHAN and D. C. RESASCO, A Framework for Analysis and Construction fo Domain Decomposition Preconditioners, Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Paris, January 1987, SIAM 1988. [Zbl: 0658.65092]
  5. L. SONKE, P. LE QUÉRE and TA PHUOC LOC, Domain decomposition and multigradient methods for the Navier-Stokes equations, Proc. 6th. International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, U.K. July 1989. [Zbl: 0728.76075]
  6. K. MILLER, Numerical analogs to the Schwarz alternating procedure, Numer. Math. 1965. [EuDML: 131641] [MR: 177520] [Zbl: 0154.41201]
  7. L. SONKÉ, Solution algorithmique de certaines équations aux dérivées partielles non symétriques : application aux équations de Navier-Stokes, in preparation.
  8. R. DAUTRAY and J. L. LIONS, Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris 1985. [Zbl: 0642.35001]
  9. R. TEMAM, Navier-Stokes equations, North Holland, 1977. [MR: 769654] [Zbl: 0383.35057]
  10. L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1957. [MR: 209834] [Zbl: 0078.11003]
  11. P. S. VASSILEVSKI, Poincaré-Steklov operators for elliptic difference problems, C. R, Acad. Bulgare Sci., 38, no. 5, 543-546, 1985. [MR: 799809] [Zbl: 0592.65065]
  12. R. GLOWINSKI, Numerical Methods for nonlinear variational problems, Springer, 1984. [MR: 737005] [Zbl: 0536.65054]
  13. C. G. SPEZIALE, On the Advantages of the Vorticity-Velocity Formulation of the Equations of Fluid Dynamics, J. Comp. Phys. 73, 476-480, 1987. [Zbl: 0632.76049]
  14. H. F. FASEL, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flows. Approximation Methods For Navier-Stokes Problem, Proc. Paderborn, Germany, 177-191, Springer-Verlag, 1979. [MR: 565996] [Zbl: 0463.76040]
  15. L. SONKÉ, P. LE QUÉRÉ and TA PHUOC LOC, Domain decomposition and Velocity-vorticity formulation for fluids flows in multiply-connected regions, in preparation. [Zbl: 0728.76075]
  16. J. M. VANEL, R. PEYRET and P. BONTOUX, A pseudo-spectral solution of vorticity-stream function equation using the influence matrix technique, Numer. Meth. Fluid Dynamics II, 463-472, Clarendon Press, Oxford, 1986. [Zbl: 0606.76030]
  17. R. PEYRET and T. D. TAYLOR, Computational methods for fluid flow, Springer-Verlag, 1985. [MR: 770204] [Zbl: 0717.76003]
  18. P. A. RAVIART and J. M. THOMAS, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris, 1984. [Zbl: 0561.65069]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you