Free Access
Volume 26, Number 6, 1992
Page(s) 757 - 791
Published online 31 January 2017
  1. C. ANDERSON, Observations on Vorticity Creation Boundary Conditions in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. [MR: 1001797] [Zbl: 0671.76030] [Google Scholar]
  2. J. P. CHOQUIN, S. HUBERSON, Application de la méthode particulaire aux écoulements à grand nombre de Reynolds, 18e Congrès National d'Analyse Numérique, Puy St-Vincent (1985). [Google Scholar]
  3. J. P. CHOQUIN, B. LUCQUIN-DESREUX, Accuracy of a deterministic particle method for Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 8 (1988), 1439-1458. [Zbl: 0664.76029] [Google Scholar]
  4. A. CHORIN, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), p. 785. [MR: 395483] [Google Scholar]
  5. G. H. COTTET, Boundary conditions and the deterministic vortex methods for the Navier-Stokes equations in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. [MR: 1001796] [Zbl: 0671.76047] [Google Scholar]
  6. G. H. COTTET, S. GALLIC, A particle method to solve transport - diffusion equations - Part I : the linear case, Internal report n° 115, C.M.A.P., École Polytechnique, Palaiseau, France. [Zbl: 0678.35077] [Google Scholar]
  7. G. H. COTTET, S. MAS-GALLIC, A particle method to solve the Navier-Stokes system, Numer. Math. 57 (1990), 1-23. [EuDML: 133483] [MR: 1065526] [Zbl: 0707.76029] [Google Scholar]
  8. P. DEGOND, S. MAS-GALLIC, The weighted particle method for convection - diffusion equations, part I : the case of an isotropic viscosity, part II : the anisotropic case, Math. Comput. 53 (1989), 485-526. [MR: 983559] [Zbl: 0676.65121] [Google Scholar]
  9. J. GOODMAN, Convergence of the random vortex method, Comm. Pure Appl. Math., 40 (1987), 189-220. [MR: 872384] [Zbl: 0635.35077] [Google Scholar]
  10. S. HUBERSON, Modélisation asymptotique et numérique de noyaux tourbillonaires enroulés, Thèse d'état (1986), Université Pierre et Marie Curie. [Google Scholar]
  11. S. HUBERSON, A. JOLLES, C. R. Acad. Sci. Paris 309, Série II, 445-448, Paris, 1989, and A Jollès, Résolution des équations de Navier-Stokes par des méthodes particules maillage, Thèse de Doctorat de l'Université, Université Pierre et Marie Curie, février 1989. [MR: 1022287] [Zbl: 0668.76121] [Google Scholar]
  12. A. LEONARD, G. WINCKELMANS, Improved vortex methods for three-dimensional flows with application to the interactions of two vortex rings in Mathematical Aspects of Vortex Dynamics (R. E. Caflish ed.), S.I.A.M., Philadelphia 1988. [MR: 1001786] [Zbl: 0671.76025] [Google Scholar]
  13. B. LUCQUIN-DESREUX, Particle approximation of the two dimensional Navier-Stokes equations, Rech. Aérospat. 4 (1987), 1-12. [Zbl: 0619.76031] [Google Scholar]
  14. B. LUCQUIN-DESREUX, Méthode particulaire conservative avec condition à la limite en dimension 1, internal report, Lab. Anal. Num. 1990. [Google Scholar]
  15. S. MAS-GALLIC, Thèse d'État de l'Université Pierre et Marie Curie, 1987 and C. R. Acad. Sci. Paris 305, série I, p. 431-434, 1987. [MR: 916346] [Zbl: 0632.76104] [Google Scholar]
  16. S. MAS-GALLIC, C. R. Acad. Sci. Paris 310, série I, p. 465-468, 1990 and Une méthode particulaire déterministe incluant diffusion et conditions aux limites, internal report 90003, Lab. Anal. Num. 1990. [MR: 1046534] [Zbl: 0695.65069] [Google Scholar]
  17. S. MAS-GALLIC, P. A. RAVIART, A particle method for first order symmetric systems, Numer. Math. 51 (1987), 323-352. [EuDML: 133198] [MR: 895090] [Zbl: 0625.65084] [Google Scholar]
  18. F. PEPIN, Simulation of the flow past an impulsively started cylinder using a discrete vortex method, Thesis, California Institute of Technology, Pasadena, California (1990). [Google Scholar]
  19. P. A. RAVIART, An analysis of particle methods, in Numerical Methods in Fluid Dynamics (F. Brezzi, ed.), Lecture Notes in Math., vol. 1127, Springer Verlag, Berlin 1985. [MR: 802214] [Zbl: 0598.76003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you