Free Access
Issue
ESAIM: M2AN
Volume 26, Number 7, 1992
Page(s) 893 - 912
DOI https://doi.org/10.1051/m2an/1992260708931
Published online 31 January 2017
  1. R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flows, New York (1967). [MR: 240836] [Zbl: 0171.44404] [Google Scholar]
  2. R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  3. S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm., Pure Appl. Math. XII (1959), 623-727. [Zbl: 0093.10401] [Google Scholar]
  4. S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm., Pure Appl. Math. XVII (1964), 35-92. [Zbl: 0123.28706] [Google Scholar]
  5. M. BERNADOU, P. G. CIARLET and J. HU, On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, J. Elasticity 14 (1984), 425-440. [Zbl: 0551.73019] [Google Scholar]
  6. D. R. J. CHILLINGWORTH, J. E. MARSDEN and Y. H. WAN, Symmetry and Bifurcation in three-dimensional elasticity, part I, Arch. Rational Mech. Anal. 80, 296-322 (1982). [Zbl: 0509.73018] [Google Scholar]
  7. P. G. CIARLET, Élasticité Tridimensionnelle, Masson, Paris (1986). [Zbl: 0572.73027] [Google Scholar]
  8. P. G. CIARLET, Mathematical Elasticity, Vol. I three-dimensional Elasticity, North Holland, Amsterdam, 1988. [Zbl: 0648.73014] [Google Scholar]
  9. M. CROUZEIX and A. MIGNOT, Analyse Numérique des Équations Différentielles, Masson, Paris (1984). [Zbl: 0635.65079] [Google Scholar]
  10. G. GEYMONAT, Sui Problemi ai limiti per i systemi lineari ellitici, Ann. Mat. Pura Appl. LXIX (1965), 207-284. [Zbl: 0152.11102] [Google Scholar]
  11. M. E. GURTIN, Introduction to continuum mechanics, Academic Press, New York (1981). [Zbl: 0559.73001] [Google Scholar]
  12. S. LANG, Introduction to differential manifolds, John Wiley and Sons, New York (1962). [Zbl: 0103.15101] [Google Scholar]
  13. H. LE DRET, Quelques problèmes d'existence en élasticité non linéaire, These, Université Pierre-et-Marie Curie, Paris 6 (1982). [Google Scholar]
  14. H. LE DRET, Contribution à l'étude de quelques problèmes issus de l'élasticité linéaire et non linéaire, Thèse d'État, Université Pierre-et-Marie Curie, Paris 6 (1988). [Google Scholar]
  15. J. E. MARSDEN and T. J. R. HUGHES, Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs (1983), Vol. 22, N° 2, 1988. [Zbl: 0545.73031] [Google Scholar]
  16. J. MASON, Variational, Incremental and energy methods in solid mechanics and shell theory, Elsevier, Amsterdam (1980). [Zbl: 0571.73008] [Google Scholar]
  17. J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967). [MR: 227584] [Google Scholar]
  18. R. NZENGWA, Méthodes incrémentales en élasticité non linéaire ; jonction entre structures élastiques tridimensionnelle et bidimensionnelle, Thèse, Université Pierre-et-Marie Curie, Paris 6 (1987). [Google Scholar]
  19. R. NZENGWA, Incremental methods in nonlinear three-dimensional incompressible elasticity, RAIRO Modél. Math. Anal. Numér., Vol. 22, N° 2, 1988, 311-342. [EuDML: 193532] [MR: 945127] [Zbl: 0651.73003] [Google Scholar]
  20. P. PODIO-GUIDUGLI, G. VERGARA-CAFFARELLI, On a class of live traction problems in elasticiy, lecture notes in physics Trends & Applications of Pure mathematics to mechanics, proc. Palaiseau (83), 291-304. [MR: 755732] [Zbl: 0541.73025] [Google Scholar]
  21. W. C. RHEINBOLDT, Methods for solving systems of nonlinear equations, CBMS series 14, SIAM, Philadelphia (1974). [MR: 1645489] [Zbl: 0325.65022] [Google Scholar]
  22. W. C. RHEINBOLDT, Numerical analysis of continuation methods for nonlinear structural problems, Comput. Struct. 13 (1981), 103-113. [MR: 616722] [Zbl: 0465.65030] [Google Scholar]
  23. S. J. SPECTOR, On uniqueness for the traction problem in finite elasticity, J. Elasticity 12, 367-383 (82). [MR: 685512] [Zbl: 0506.73043] [Google Scholar]
  24. J. L. THOMPSON, Some existence theorems for traction boundary-value problem of linearized elastostatics, Arch. Rational Mech. Anal. 32, 369-399 (1969). [MR: 237130] [Zbl: 0175.22108] [Google Scholar]
  25. C. TRUESDELL and W. NOLL, The nonlinear Field theories of mechanics, Handbuch der Physik, Vol. III/3, 1-602 (1965). [MR: 193816] [Zbl: 1068.74002] [Google Scholar]
  26. T. VALENT, Sulla differenziabilità dell' operatore di Nemystky, Mend. Acc. Naz. Lincei. 65, 15-26 (1978). [Zbl: 0424.35084] [Google Scholar]
  27. C. C. WANG and C. TRUESDELL, Introduction to Rational Elasticity, Noordhoff, Groningen (1973). [MR: 468442] [Zbl: 0308.73001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you