Free Access
Issue
ESAIM: M2AN
Volume 26, Number 7, 1992
Page(s) 893 - 912
DOI https://doi.org/10.1051/m2an/1992260708931
Published online 31 January 2017
  1. R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flows, New York (1967). [MR: 240836] [Zbl: 0171.44404]
  2. R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). [MR: 450957] [Zbl: 0314.46030]
  3. S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm., Pure Appl. Math. XII (1959), 623-727. [Zbl: 0093.10401]
  4. S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm., Pure Appl. Math. XVII (1964), 35-92. [Zbl: 0123.28706]
  5. M. BERNADOU, P. G. CIARLET and J. HU, On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, J. Elasticity 14 (1984), 425-440. [Zbl: 0551.73019]
  6. D. R. J. CHILLINGWORTH, J. E. MARSDEN and Y. H. WAN, Symmetry and Bifurcation in three-dimensional elasticity, part I, Arch. Rational Mech. Anal. 80, 296-322 (1982). [Zbl: 0509.73018]
  7. P. G. CIARLET, Élasticité Tridimensionnelle, Masson, Paris (1986). [Zbl: 0572.73027]
  8. P. G. CIARLET, Mathematical Elasticity, Vol. I three-dimensional Elasticity, North Holland, Amsterdam, 1988. [Zbl: 0648.73014]
  9. M. CROUZEIX and A. MIGNOT, Analyse Numérique des Équations Différentielles, Masson, Paris (1984). [Zbl: 0635.65079]
  10. G. GEYMONAT, Sui Problemi ai limiti per i systemi lineari ellitici, Ann. Mat. Pura Appl. LXIX (1965), 207-284. [Zbl: 0152.11102]
  11. M. E. GURTIN, Introduction to continuum mechanics, Academic Press, New York (1981). [Zbl: 0559.73001]
  12. S. LANG, Introduction to differential manifolds, John Wiley and Sons, New York (1962). [Zbl: 0103.15101]
  13. H. LE DRET, Quelques problèmes d'existence en élasticité non linéaire, These, Université Pierre-et-Marie Curie, Paris 6 (1982).
  14. H. LE DRET, Contribution à l'étude de quelques problèmes issus de l'élasticité linéaire et non linéaire, Thèse d'État, Université Pierre-et-Marie Curie, Paris 6 (1988).
  15. J. E. MARSDEN and T. J. R. HUGHES, Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs (1983), Vol. 22, N° 2, 1988. [Zbl: 0545.73031]
  16. J. MASON, Variational, Incremental and energy methods in solid mechanics and shell theory, Elsevier, Amsterdam (1980). [Zbl: 0571.73008]
  17. J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967). [MR: 227584]
  18. R. NZENGWA, Méthodes incrémentales en élasticité non linéaire ; jonction entre structures élastiques tridimensionnelle et bidimensionnelle, Thèse, Université Pierre-et-Marie Curie, Paris 6 (1987).
  19. R. NZENGWA, Incremental methods in nonlinear three-dimensional incompressible elasticity, RAIRO Modél. Math. Anal. Numér., Vol. 22, N° 2, 1988, 311-342. [EuDML: 193532] [MR: 945127] [Zbl: 0651.73003]
  20. P. PODIO-GUIDUGLI, G. VERGARA-CAFFARELLI, On a class of live traction problems in elasticiy, lecture notes in physics Trends & Applications of Pure mathematics to mechanics, proc. Palaiseau (83), 291-304. [MR: 755732] [Zbl: 0541.73025]
  21. W. C. RHEINBOLDT, Methods for solving systems of nonlinear equations, CBMS series 14, SIAM, Philadelphia (1974). [MR: 1645489] [Zbl: 0325.65022]
  22. W. C. RHEINBOLDT, Numerical analysis of continuation methods for nonlinear structural problems, Comput. Struct. 13 (1981), 103-113. [MR: 616722] [Zbl: 0465.65030]
  23. S. J. SPECTOR, On uniqueness for the traction problem in finite elasticity, J. Elasticity 12, 367-383 (82). [MR: 685512] [Zbl: 0506.73043]
  24. J. L. THOMPSON, Some existence theorems for traction boundary-value problem of linearized elastostatics, Arch. Rational Mech. Anal. 32, 369-399 (1969). [MR: 237130] [Zbl: 0175.22108]
  25. C. TRUESDELL and W. NOLL, The nonlinear Field theories of mechanics, Handbuch der Physik, Vol. III/3, 1-602 (1965). [MR: 193816] [Zbl: 1068.74002]
  26. T. VALENT, Sulla differenziabilità dell' operatore di Nemystky, Mend. Acc. Naz. Lincei. 65, 15-26 (1978). [Zbl: 0424.35084]
  27. C. C. WANG and C. TRUESDELL, Introduction to Rational Elasticity, Noordhoff, Groningen (1973). [MR: 468442] [Zbl: 0308.73001]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you