Free Access
Volume 27, Number 1, 1993
Page(s) 9 - 34
Published online 31 January 2017
  1. T. ARBOGAST, A new formulation of mixed finite element methods for second order elliptic problems (to appear). [Zbl: 1248.65119] [Google Scholar]
  2. D. N. ARNOLD and F. BREZZI, Mixed and nonconforming finite element methods : implementation postprocessing and error estimates, RAIRO Model. Math. Anal Numér., 19 (1985), pp 7-32. [EuDML: 193443] [MR: 813687] [Zbl: 0567.65078] [Google Scholar]
  3. F. BREZZI, J. DOUGLAS Jr and L. DONATELLA MARINI, Two families of mixed finite elements for second order elliptic problems, Numer Math., 47 (1985), pp 217-235. [EuDML: 133032] [MR: 799685] [Zbl: 0599.65072] [Google Scholar]
  4. Z. CHEN, On the relationship between mixed and Galerkin finite element methods, Ph. D. thesis, Purdue University, West Lafayette, Indiana, August (1991). [Google Scholar]
  5. F. BREZZI and M. FORTIN, Hybrid and Mixed Finite Element Methods, to appear. [Zbl: 0788.73002] [Google Scholar]
  6. P. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  7. J. DOUGLAS Jr and J. E. ROBERTS, Global estimates for mixed methods for second order elliptic problems, Math. Comp., 45 (1985), pp 39-52. [MR: 771029] [Zbl: 0624.65109] [Google Scholar]
  8. R. FALK and J. OSBORN, Error estimates for mixed methods, RAIRO, Model. Math. Anal. Numér., 14 (1980), pp 249-277. [EuDML: 193361] [MR: 592753] [Zbl: 0467.65062] [Google Scholar]
  9. M. FORTIN and M. SOULIE, A non-conforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg., 19 (1983), pp 505-520. [MR: 702056] [Zbl: 0514.73068] [Google Scholar]
  10. B. X. FRAEIJS DE VEUBEKE, Displacement and equilibrium models in the finite element method, in Stress Analysis, O. C. Zienkiewicz and G. Hohste (eds.), John Wiley, New York, 1965. [Zbl: 0359.73007] [Google Scholar]
  11. L. DONATELLA MARINI, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal., 22 (1985), pp 493-496. [MR: 787572] [Zbl: 0573.65082] [Google Scholar]
  12. L. DONATELLA MARINI and P. PIETRA, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput., 8 (1989), pp 219-239. [MR: 1067287] [Zbl: 0711.65091] [Google Scholar]
  13. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer-Verlag, Berlin and New York (1977), pp 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you