Free Access
Volume 27, Number 3, 1993
Page(s) 349 - 374
Published online 31 January 2017
  1. M. BERGER, Géométrie volume 3, convexes et polytopes, polyèdres réguliers, aires et volumes, Nathan, Paris, 1978. [MR: 536872] [Zbl: 0423.51001] [Google Scholar]
  2. P. BROUX, Using the Gaussian image to find the orientation of objects, Int. J. Robotics Res., vol. 3, n° 4, 1984. [Google Scholar]
  3. D. R. CHAND and S. S. KAPUR, An algorithm for convex polytopes, JACM, vol. 17, n° 1, January 1970, pp. 78-86. [MR: 278177] [Zbl: 0199.50902] [Google Scholar]
  4. M. P. DO CARMO, Differential geometry of curves and surfaces, Prentice Hall, New Jersey, 1976. [MR: 394451] [Zbl: 0326.53001] [Google Scholar]
  5. H. EDELSBRUNNER, Algorithms in combinatorial geometry, EATCS Monogr. Theoret. Comput. Sci., vol, 10, Springer Verlag, 1987. [MR: 904271] [Zbl: 0634.52001] [Google Scholar]
  6. H. G. EGGLESTON, Convexity, Cambridge University Press, 1958. [MR: 124813] [Zbl: 0086.15302] [Google Scholar]
  7. B. GRÛNBAUM, Convex Polytopes, John Wiley and Sons ltd, London and New York, 1967. [MR: 226496] [Zbl: 0163.16603] [Google Scholar]
  8. D. HILBERT and S. COHN-VOSSEN, Geometry and the imagination, Chelsa Publishing company, New York. [MR: 46650] [Zbl: 0047.38806] [Google Scholar]
  9. B. K. P. HORN, Extended Gaussian images, Proceeding of IEEE, pp. 1671- 1686, December 1984. [Google Scholar]
  10. B. K. P. HORN and K. I. IKEUCHI, The Mechanical manipulation of randomly oriented parts, Scientific American, August 1984. [Google Scholar]
  11. K. I. IKEUCHI, Recognition of 3D objects using the extended Gaussian image, Proceedings of the seventh I.J.C.A.I., pp. 595-600, 1981. [Google Scholar]
  12. J. B. LASSERRE, An analytical expression and an algorithm for the volume of a convex polyedron in Rn, J.O.T.A., vol. 39, n° 3, March 1983. [MR: 703477] [Zbl: 0487.52006] [Google Scholar]
  13. J. LEMORDANT, Pham. Dinh. TAO and H. ZOUAKI, Reconstruction d'un polyèdre à partir de son image gaussienne généralisée, Journée de géométrie algorithmique, INRIA Sophia-Antipolis, 18-20 juin 1990. [MR: 1098960] [Google Scholar]
  14. J. J. LITTLE, An iterative method for reconstracting convex polyedra from extended Gaussian image, Proceedings of A.A.A.I. 83, pp. 247-250, 1983. [Google Scholar]
  15. J. J. LITTLE, Recovering shape and determining attitude from extended Gaussian images, Technical report TN 85-2, April 1985. University of British Columbia, Vancouver. [Google Scholar]
  16. D. G. LUENBERGER, Introduction to linear and non linear programming, Addison-Wesley, 1973. [Zbl: 0297.90044] [Google Scholar]
  17. L. A. LYUSTERNIK, Convex figures and polyedra, Dover publications, New York, 1963. [MR: 161219] [Zbl: 0113.16201] [Google Scholar]
  18. P. MCMULLEN and G. C. SHEPARD, Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971. [MR: 301635] [Zbl: 0217.46702] [Google Scholar]
  19. H. MINKOWSKI, Volumen und oberfläch, Math. Ann., 57, 1903. [EuDML: 158108] [MR: 1511220] [JFM: 34.0649.01] [Google Scholar]
  20. M. MINOUX, Programmation mathématiques, tome I, Dunod, Paris, 1983. [Zbl: 0546.90056] [Google Scholar]
  21. B. PCHENITCHNY and Y. DANILINE, Méthodes numériques dans les problèmes d'extremum, Mir, 1977. [MR: 474818] [Zbl: 0389.65027] [Google Scholar]
  22. A. V. POGORELOV, The Minkowski multidimensional problem, Winston and Sons, 1978. [MR: 478079] [Zbl: 0387.53023] [Google Scholar]
  23. F. P. PREPARATA and S. J. HONG, Convex hulls of finite sets of points m two and three dimensions, C.A.C.M. vol 20, pp 87 93, 1977. [MR: 488985] [Zbl: 0342.68030] [Google Scholar]
  24. R. T. ROCKAFELLAR, The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions, Heldermann Verlag, Berlin. [MR: 623763] [Zbl: 0462.90052] [Google Scholar]
  25. S. USELTON, Surface reconstruction from limited information, U.M.I. Dissertation information service, 1981. [Google Scholar]
  26. K. WEILER, Edge-based data structure for solid modelling in curved surface environments, IEEE Computer Graphics and Applications, January, 19851985, pp 21-24. [Google Scholar]
  27. P. FAURE and P. HUARD, Résolution de programmes mathématiques avec la méthode du gradient réduit, R.F.R.O., n° 36, 1965, pp 167-206. [Zbl: 0135.20001] [Google Scholar]
  28. H. ZOUAKI, Modélisation et optimisation numérique pour la reconstruction d'un polyèdre a partir de son image gaussienne généralisée, These de l'université Joseph Fourier, juillet 1991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you