Free Access
Issue
ESAIM: M2AN
Volume 28, Number 2, 1994
Page(s) 189 - 221
DOI https://doi.org/10.1051/m2an/1994280201891
Published online 31 January 2017
  1. P. ALART, 1985, Contribution à la résolution numérique des inclusions différentielles, Thèse de troisième cycle, Université de Montpellier. [Google Scholar]
  2. P. ALART, B. LEMAIRE, Penalization in non classical convex programming via variational convergence, to appear in Mathematical Programming. [Zbl: 0748.90051] [Google Scholar]
  3. P. ALEXANDRE, 1988, Méthode des centres et pénalités extérieures associées à une méthode proximale en optimisation convexe, Mémoire de licence en informatique, Université de Liège. [Google Scholar]
  4. H. ATTOUCH, 1984, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman, London. [MR: 773850] [Zbl: 0561.49012] [Google Scholar]
  5. H. ATTOUCH, R. J. B. WETS, 1986, Isometries for the Legendre-Fenchel Transform. Trans. A.M.S. 296, 1. 33-60. [MR: 837797] [Zbl: 0607.49009] [Google Scholar]
  6. H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : I. The Epigraphical Distance, Techn. Report, University of California-Davis. [Zbl: 0753.49007] [Google Scholar]
  7. H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : II. A Framework for nonlinear Conditioning, Techn. Report, AVA-MAC, Université de Perpignan. [Zbl: 0793.49005] [Google Scholar]
  8. H. ATTOUCH, R. J. B. WETS, 1987, Quantitative Stability of Variational Systems : III. ε-approximate Solutions, WP-87-25 (Title : Lipschitzian Stability of ε-Approximate Solutions in Convex Optimization), IIASA, Laxenburg. [Zbl: 0802.49009] [Google Scholar]
  9. A. AUSLENDER, 1987, Numerical Methods for Non-differentiable Convex Optimization, Mathematical Programming Study, 30, 102-126. [MR: 874134] [Zbl: 0616.90052] [Google Scholar]
  10. A. AUSLENDER, J. P. CROUZEIX, P. FEDIT, 1987, Penalty Proximal Methods in Convex Programming, Journal of Optimization Theory and Applications, 55,1-21. [MR: 915675] [Zbl: 0622.90065] [Google Scholar]
  11. A. BENSOUSSAN, P. KENNETH, 1968, Sur l'analogie entre les méthodes de régularisation et de pénalisation. RAIRO. 13, 13-26. [EuDML: 193109] [MR: 242497] [Zbl: 0177.48105] [Google Scholar]
  12. H. BREZIS, 1973, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5. [MR: 348562] [Zbl: 0252.47055] [Google Scholar]
  13. S. COLLINET, 1988, Association point proximal et pénalité exponentielle en programmation convexe, Mémoire de licence en informatique, Université de Liège. [Google Scholar]
  14. P. FEDIT, 1985, Contribution aux méthodes numériques en programmation mathématique non différentiable, Thèse de troisième cycle, Université de Clermont II. [Google Scholar]
  15. S. GOWDA, M. TEBOULLE, 1990, A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control and Optimization, 28, 925-935. [MR: 1051630] [Zbl: 0713.49042] [Google Scholar]
  16. J. HARTUNG, 1980, On Exponential Penalty Function Methods, Math. Operationstorsch, Statist., Ser. Optimization, 11, 71-84. [MR: 608906] [Zbl: 0514.90077] [Google Scholar]
  17. A. A. KAPLAN, 1973, Characteristic Properties of Penalty Functions, English Transl. in Soviet Math. Dokl., 14, 849-852. [MR: 439194] [Zbl: 0285.90065] [Google Scholar]
  18. A. A. KAPLAN, 1978, On a Convex programming Method with Internal Regularization, English Transl. in Soviet. Math. Dokl, 19, 795-799. [Zbl: 0423.90061] [Google Scholar]
  19. B. LEMAIRE, 1971, Régularisation et pénalisation en optimisation convexe, Séminaire d'analyse convexe, exposé 17, Institut de Math., Université des Sciences et Techniques du Languedoc, Montpellier. [MR: 638215] [Zbl: 0353.90072] [Google Scholar]
  20. B. LEMAIRE, 1988, Coupling Optimization Methods and Variational Convergence, Trends in Mathematical Optimization International Series of Num. Math., K. H. Hoffmann, J. B. Hiriart-Urruty, C. Lemarechal, J. Zowe, editors, Birkhauser Verlag, Basel, 84, 163-179. [MR: 1017952] [Zbl: 0633.49010] [Google Scholar]
  21. B. LEMAIRE, 1987, The proximal Algorithm, in « New Methods of Optimization and their Industrial Use », Proc. Symp. Pau and Paris, Int. Ser. Numer. Math.,87, 73-77. [MR: 1001168] [Zbl: 0692.90079] [Google Scholar]
  22. B. MARTINET, 1972, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'Etat, Université de Grenoble. [Google Scholar]
  23. G. J. MINTY, 1964, On the Monotonicity of the Gradient of a Convex Function, Pacific J. Math., 14, 243-247. [MR: 167859] [Zbl: 0123.10601] [Google Scholar]
  24. K. MOUALLIF, 1987, Sur la convergence d'une méthode associant pénalisation et régularisation, Bull. Soc. Roy. Sc. de Liège, 56, 175-180. [MR: 911354] [Zbl: 0641.90065] [Google Scholar]
  25. K. MOUALLIF, 1989, Convergence variationnelle et méthodes perturbée pour les problèmes d'optimisation et de point selle, Thèse d'Etat, Université de Liège. [Google Scholar]
  26. K. MOUALLIF, P. TOSSINGS, 1987, Une méthode de pénalisation exponentielle associée à une régularisation proximale, Bull. Soc. Roy. Sc. de Liège, 56, 181-192. [MR: 911355] [Zbl: 0623.90062] [Google Scholar]
  27. K. MOUALLIF, P. TOSSINGS, 1990, Variational Metric and Exponential Penalization, JOTA, 67, 185-192. [MR: 1080273] [Zbl: 0688.90043] [Google Scholar]
  28. F. MURPHY, 1974, A Class of Exponential Penalty Functions, SIAM Journal Control, 12, 679-687. [MR: 363486] [Zbl: 0257.90050] [Google Scholar]
  29. R. T. ROCKAFELLAR, 1970, Convex Analysis, Univ. Press, Princeton, New-Jersey. [MR: 274683] [Zbl: 0193.18401] [Google Scholar]
  30. R. T. ROCKAFELLAR, 1970, On the Maximal Monotonicity of Subdifferential Mappings, Pacific J. of Math., 33, 209-216. [MR: 262827] [Zbl: 0199.47101] [Google Scholar]
  31. R. T. ROCKAFELLAR, 1976, Augmented Lagrangians and Applications of the proximal Point Algorithm in Convex Programming, Math. of Operations Research, 1, 97-116. [MR: 418919] [Zbl: 0402.90076] [Google Scholar]
  32. R. T. ROCKAFELLAR, 1976, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, 14, 877-898. [MR: 410483] [Zbl: 0358.90053] [Google Scholar]
  33. J. J. STRODIOT, V. H. NGUYEN, 1979, An Exponential Penalty Method for Nondifferentiable Minimax Problems with General Constraints, Journal of Opt. Theory and Appl, 27, 205-219. [MR: 529860] [Zbl: 0373.90064] [Google Scholar]
  34. J. J. STRODIOT, V. H. NGUYEN, 1988, On the Numerical Treatment of the Inclusion 0 є ∂f(x), Topics in Nonsmooth Mechanics, J. J. Moreau, P.D. Panagiotopoulos, G. Strang, eds., Birkhauser Verlag, Basel. [MR: 957086] [Zbl: 0663.65064] [Google Scholar]
  35. A. TIKHONOV, V. ARSENINE, 1976, Méthodes de résolution de problèmes mal posés, Editions MIR de Moscou, traduction française. [MR: 455367] [Google Scholar]
  36. P. TOSSINGS, 1987, Optimisation convexe, Séminaire d'analyse fonctionnelle appliquée, Université de Liège. [Google Scholar]
  37. P. TOSSINGS, 1990, Sur l'ordre de convergence de l'algorithme du point proximal perturbé, Bull. Soc. Roy. Sc. de Liège, 58,459-466. [MR: 1039675] [Zbl: 0686.90032] [Google Scholar]
  38. P. TOSSINGS, 1990, Sur les zéros des opérateurs maximaux monotones et applications, Thèse d'Etat, Université de Liège. [Google Scholar]
  39. P. TOSSINGS, 1991, Convergence variationnelle et opérateurs maximaux monoteurs d'un espace de Hilbert réel, Bull. Soc. Roy. Sc. de Liège; 60, 103-132. [MR: 1117786] [Zbl: 0733.47047] [Google Scholar]
  40. P. TOSSINGS, The Perturbed Proximal Point Algorithm and Some of its Applications, to appear in Applied mathematics and optimization. [Zbl: 0791.65039] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you