Free Access
Issue
ESAIM: M2AN
Volume 28, Number 2, 1994
Page(s) 223 - 241
DOI https://doi.org/10.1051/m2an/1994280202231
Published online 31 January 2017
  1. G. BEYLKIN, R. COIFMAN and V. ROKHLIN, 1991, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math., XLIV, pp. 141-183. [MR: 1085827] [Zbl: 0722.65022] [Google Scholar]
  2. F. X. CANNING, 1992, Sparse approximation for solving integral equations with oscillatory kernels, Siam J. Sci. Stat. Comput., 13. [MR: 1145176] [Zbl: 0749.65093] [Google Scholar]
  3. J. CHAZARAIN and A. PIRIOU, 1981, Introduction à la théorie des équations aux dérivées partielles linéaires, Paris, Gauthier-Villars. [MR: 598467] [Zbl: 0446.35001] [Google Scholar]
  4. P. COLTON and R. KRESS, 1993, Integral equation method in scattering theory, Pure and Applied Mathematics. [Zbl: 0522.35001] [Google Scholar]
  5. A. DE LA BOURDONNAYE, 1991, Accélération du traitement numérique de l'équation de Helmholtz par équations intégrales et parallélisation, thèse de doctorat, Ecole polytechnique, Palaiseau, France. [Google Scholar]
  6. J. J. DUISTERMAAT, 1973, Fourier integral operators, Courant Institute of Mathematical Sciences, New York. [MR: 451313] [Zbl: 0272.47028] [Google Scholar]
  7. V. FOCK, 1946, The distribution of currents induced by a plane wave on the surface of a conductor, J. Phys., 10, 130-136. [MR: 17661] [Zbl: 0063.01396] [Google Scholar]
  8. V. GUILLEMIN and D. SCHAEFFER, 1973, Remarks on a paper of D. Ludwig, Bull, of the A.M.S. 79. [MR: 410050] [Zbl: 0256.35008] [Google Scholar]
  9. M. HAMDI, 1981, Une formulation variationnelle par équations pour la résolution de l'équation de Helmholtz avec des conditions aux limites mixtes, C. R. Acad. Sc, Série II, t. 292, 17-20. [MR: 637242] [Zbl: 0479.76088] [Google Scholar]
  10. D. LUDWIG, 1967, Uniform asymptotic expansion of the field scattered by a convex object at high frequencies, Comm. Pure Appl. Math., XX, 103-138. [MR: 204032] [Zbl: 0154.12802] [Google Scholar]
  11. J. NEDELEC, 1980, Mixed finite elements in R3, Numer. Mathematik, 35. [EuDML: 186293] [Zbl: 0419.65069] [Google Scholar]
  12. A. F. NIKIFOROV and V. B. UVAROV, 1988, Special fonctions of mathematical physics, Birkhäuser, Basel Boston. [MR: 922041] [Zbl: 0624.33001] [Google Scholar]
  13. S. RAO, D. WILTON and A. GLISSON, 1982, Electromagnetic scattering by surface of arbitrary shape, I.E.E.E. Trans. on antennas and propagation, AP-30, 409-418. [Google Scholar]
  14. V. ROKHLIN, 1990, Rapid solution of integral equations of scattering theory in two dimensions, Journal of Computational Physics, 86, 414-439. [MR: 1036660] [Zbl: 0686.65079] [Google Scholar]
  15. B. STUPFEL, R. L. MARTRET, P. BONNEMASON and B. SCHEURER, 1991, Combined boundary-element and finite-element method for the scattering problem by axisymmetrical penetrable objects, in Mathematical and numerical aspects of wave propagation phenomena, G. Cohen, L. Halpern and P. Joly, eds., SIAM, 332-341. [MR: 1106007] [Google Scholar]
  16. M. TAYLOR, 1981, Pseudo differential operators, vol. 34 of Princeton mathematical series, Princeton University Press, Princeton. [Zbl: 0453.47026] [Google Scholar]
  17. G. N. WATSON, 1944, A treatise on Bessel functions, Cambridge University Press, 1944. [MR: 10746] [JFM: 48.0412.02] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you