Free Access
Volume 28, Number 3, 1994
Page(s) 243 - 266
Published online 31 January 2017
  1. O. AXELSSON and I. GUSTAFSON, 1983, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comput., 40, 219-242. [MR: 679442] [Zbl: 0511.65079] [Google Scholar]
  2. M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for finite element solutions of the Stokes problem in the primitive variables, Numer. Math., 33, 211-224. [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058] [Google Scholar]
  3. F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol.15, Springer-Verlag, New York. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  4. J. H. BRAMBLE, J. E. PASCIAK and J. Xu, 1990, Parallel multilevel preconditioners, Math. Comput., 55,1-22. [MR: 1023042] [Zbl: 0703.65076] [Google Scholar]
  5. M. CHEN and R. TEMAM, 1991, The incremental unknowns method, I, II, Applied Mathematics Letters. [MR: 1101880] [Zbl: 0726.65133] [Google Scholar]
  6. P. CIARLET, 1977, The Finite Element Method for Elliptic Problems, North-Holland. [Zbl: 0383.65058] [Google Scholar]
  7. A. DEBUSSCHE and M. MARION, On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. [MR: 1187868] [Zbl: 0760.34050] [Google Scholar]
  8. I. EKELAND and R. TEMAM, 1976, Convex Analysis and Variational Problems, North-Holland, Amsterdam. [MR: 463994] [Zbl: 0322.90046] [Google Scholar]
  9. I. FLAHAUT, 1991, Approximate inertial manifolds for the sine-Gordon equation, J. Diff. and Integ. Equ., 4, 1169-1194. [MR: 1133751] [Zbl: 0748.35039] [Google Scholar]
  10. C. FOIAS, O. MANLEY and R. TEMAM, 1988, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math, Model. Numer. Anal, 22, 93-114. [EuDML: 193526] [MR: 934703] [Zbl: 0663.76054] [Google Scholar]
  11. C. FOIAS, . S SELL and R. TEMAM, 1988, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73,309-353. [MR: 943945] [Zbl: 0643.58004] [Google Scholar]
  12. V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, New York. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  13. O. GOUBET, 1992, Construction of approximate inertial manifolds using wavelets, SIAM J. Math. Anal., 23,1455-1481. [MR: 1185638] [Zbl: 0770.35003] [Google Scholar]
  14. O. GOUBET, 1992, Separation des variables dans le probleme de Stokes. Application à son approximation multiéchelles éléments finis, C. R. Acad. Sci.Paris, 315, Série I, 1315-1318. [MR: 1194543] [Zbl: 0763.76043] [Google Scholar]
  15. P. GRISVARD, 1980, Boundary Value Problems in Non-smooth Domains, Univ.of Maryland, Départ, of Math., Lecture Notes n° 19. [Google Scholar]
  16. M. MARION and R. TEMAM, 1989, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139-1157. [MR: 1014878] [Zbl: 0683.65083] [Google Scholar]
  17. M. MARION and R. TEMAM, 1990, Nonlinear Galerkin methods, the finite elements case, Numer. Math., 57,1-22. [EuDML: 133445] [MR: 1057121] [Zbl: 0702.65081] [Google Scholar]
  18. F. PASCAL, 1992, Thesis, Université de Paris-Sud. [Google Scholar]
  19. K. PROMISLOW and R. TEMAM, Localization and approximation of attractors for the Ginzburg-Landau equation, J. Dynamic and Diff. Equ., to appear. [MR: 1129558] [Zbl: 0751.34036] [Google Scholar]
  20. R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]
  21. R. TEMAM, 1989, Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Tokyo, Sec. IA, 36, 629-647. [MR: 1039488] [Zbl: 0698.58040] [Google Scholar]
  22. R. TEMAM, 1990, Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 154-178. [MR: 1032732] [Zbl: 0715.35039] [Google Scholar]
  23. R. TEMAM, 1984, Navier-Stokes Equations, 3rd ed., North-Holland, Amsterdam. [MR: 769654] [Zbl: 0568.35002] [Google Scholar]
  24. R. VERFÜRTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Numer. Anal., 18, 175-182. [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037] [Google Scholar]
  25. H. YSERENTANT, 1986, On the multi-level spliting of finite element spaces, Numer. Math., 49, 379-412. [EuDML: 133143] [Zbl: 0608.65065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you