Free Access
Issue |
ESAIM: M2AN
Volume 28, Number 4, 1994
|
|
---|---|---|
Page(s) | 419 - 439 | |
DOI | https://doi.org/10.1051/m2an/1994280404191 | |
Published online | 31 January 2017 |
- T. ABBOUD, J. NÉDÉLEC, 1992, Electromagnetic waves in an inhomogeneous medium, J, Math. Anal. Appl, 164, 40-58. [MR: 1146575] [Zbl: 0755.35134] [Google Scholar]
- A. BENDALI, 1984, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 1 : The continuous problem., Math. of Computation, 167, 29-46. [MR: 744923] [Zbl: 0555.65082] [Google Scholar]
- A. BENDALI, 1984, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem, Math. of Computation, 167, 47-68. [MR: 744924] [Zbl: 0555.65083] [Google Scholar]
- H. BELLOUT, A. FRIEDMAN, 1990, Scattering by stripe grating, J. Math. Anal. Appl., 147, 228-248. [MR: 1044697] [Zbl: 0716.35061] [Google Scholar]
- M. BORN, E. WOLF, 1980, Principles of Optics, sixth edition, Pergamon Press, Oxford. [Google Scholar]
- O. P. BRUNO, F. REITICH, 1992, Solution of a boundary value problem for elmholtz equation via variation of the boundary into the complex domain, Proc. Royal Soc. Edinburgh, 122A, 317-340. [MR: 1200203] [Zbl: 0789.35042] [Google Scholar]
- O. P. BRUNO, F. REITICH, 1993, Numerical solution of diffraction problems : a method of variation of boundaries, J. Opt. Soc. America A, 10, 1168-1175. [Google Scholar]
- O. P. BRUNO, F. REITICH, Numerical solution of diffraction problems : a method of variation of boundaries II. Dielectric gratings, Padé approximants and singularities ; III. Doubly periodic gratings, preprints. [MR: 1817674] [Google Scholar]
- X. CHEN, A. FRIEDMAN, 1991, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc, 323, 465-507. [MR: 1010883] [Zbl: 0727.35131] [Google Scholar]
- J. A. COX, D. DOBSON, 1991, An integral equation method for biperiodic diffraction structures, in J. Lerner and W. McKinney, ed., International Conference on the Application and Theory of Periodic Structures, Proc. SPIE 1545, 106-113. [Google Scholar]
- D. DOBSON, A. FRIEDMAN, 1992, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166, 507-528. [MR: 1160941] [Zbl: 0759.35046] [Google Scholar]
- B. DUCOMET, D. Ha. QUANG, 1992, Diffusion électromagnétique à basse fréquence par un réseau de cylindres diélectriques : étude numérique, RAIRO, Modél. Math. Anal. Numér. 26, 709-738. [EuDML: 193682] [MR: 1183414] [Zbl: 0754.65103] [Google Scholar]
- A. FRIEDMAN, 1990, Mathematics in Industrial Problems, Part 3, Springer-Verlag, Heidelberg. [MR: 1074003] [Zbl: 0731.00006] [Google Scholar]
- D. GILBARG, N. S. TRUDINGER, 1977, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg. [MR: 473443] [Zbl: 0361.35003] [Google Scholar]
- T. KATO, 1980, Perturbation Theory for Linear Operators (corrected second édition), Springer-Verlag, Berlin. [MR: 407617] [Zbl: 0435.47001] [Google Scholar]
- J. C. NÉDÉLEC, F. STARLING, 1988, Integral equation methods in quasi-periodic diffraction problems for the time-harmonic Maxwell's equations, in « Rapport Interne », Vol. 179, C.M.A.P., Ecole Polytechnique, Palaiseau. [Zbl: 0756.35004] [Google Scholar]
- [16] Electromagnetic Theory of Gratings, 1980, Topics in Current Physics, Vol. 22, edited by R. Petit, Springer-Verlag, Heidelberg. [MR: 609533] [Google Scholar]
- M TAYLOR, 1981, Pseudodifferential Operators, Princeton University Press, Princeton, N. J. [MR: 618463] [Zbl: 0453.47026] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.