Free Access
Issue
ESAIM: M2AN
Volume 28, Number 4, 1994
Page(s) 419 - 439
DOI https://doi.org/10.1051/m2an/1994280404191
Published online 31 January 2017
  1. T. ABBOUD, J. NÉDÉLEC, 1992, Electromagnetic waves in an inhomogeneous medium, J, Math. Anal. Appl, 164, 40-58. [MR: 1146575] [Zbl: 0755.35134]
  2. A. BENDALI, 1984, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 1 : The continuous problem., Math. of Computation, 167, 29-46. [MR: 744923] [Zbl: 0555.65082]
  3. A. BENDALI, 1984, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem, Math. of Computation, 167, 47-68. [MR: 744924] [Zbl: 0555.65083]
  4. H. BELLOUT, A. FRIEDMAN, 1990, Scattering by stripe grating, J. Math. Anal. Appl., 147, 228-248. [MR: 1044697] [Zbl: 0716.35061]
  5. M. BORN, E. WOLF, 1980, Principles of Optics, sixth edition, Pergamon Press, Oxford.
  6. O. P. BRUNO, F. REITICH, 1992, Solution of a boundary value problem for elmholtz equation via variation of the boundary into the complex domain, Proc. Royal Soc. Edinburgh, 122A, 317-340. [MR: 1200203] [Zbl: 0789.35042]
  7. O. P. BRUNO, F. REITICH, 1993, Numerical solution of diffraction problems : a method of variation of boundaries, J. Opt. Soc. America A, 10, 1168-1175.
  8. O. P. BRUNO, F. REITICH, Numerical solution of diffraction problems : a method of variation of boundaries II. Dielectric gratings, Padé approximants and singularities ; III. Doubly periodic gratings, preprints. [MR: 1817674]
  9. X. CHEN, A. FRIEDMAN, 1991, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc, 323, 465-507. [MR: 1010883] [Zbl: 0727.35131]
  10. J. A. COX, D. DOBSON, 1991, An integral equation method for biperiodic diffraction structures, in J. Lerner and W. McKinney, ed., International Conference on the Application and Theory of Periodic Structures, Proc. SPIE 1545, 106-113.
  11. D. DOBSON, A. FRIEDMAN, 1992, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166, 507-528. [MR: 1160941] [Zbl: 0759.35046]
  12. B. DUCOMET, D. Ha. QUANG, 1992, Diffusion électromagnétique à basse fréquence par un réseau de cylindres diélectriques : étude numérique, RAIRO, Modél. Math. Anal. Numér. 26, 709-738. [EuDML: 193682] [MR: 1183414] [Zbl: 0754.65103]
  13. A. FRIEDMAN, 1990, Mathematics in Industrial Problems, Part 3, Springer-Verlag, Heidelberg. [MR: 1074003] [Zbl: 0731.00006]
  14. D. GILBARG, N. S. TRUDINGER, 1977, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg. [MR: 473443] [Zbl: 0361.35003]
  15. T. KATO, 1980, Perturbation Theory for Linear Operators (corrected second édition), Springer-Verlag, Berlin. [MR: 407617] [Zbl: 0435.47001]
  16. J. C. NÉDÉLEC, F. STARLING, 1988, Integral equation methods in quasi-periodic diffraction problems for the time-harmonic Maxwell's equations, in « Rapport Interne », Vol. 179, C.M.A.P., Ecole Polytechnique, Palaiseau. [Zbl: 0756.35004]
  17. [16] Electromagnetic Theory of Gratings, 1980, Topics in Current Physics, Vol. 22, edited by R. Petit, Springer-Verlag, Heidelberg. [MR: 609533]
  18. M TAYLOR, 1981, Pseudodifferential Operators, Princeton University Press, Princeton, N. J. [MR: 618463] [Zbl: 0453.47026]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you