Free Access
Volume 28, Number 5, 1994
Page(s) 575 - 610
Published online 31 January 2017
  1. J. P. AUBIN, I. EKELAND, 1984, Applied Nonlinear Analysis, Wiley Interscience, New York. [MR: 749753] [Zbl: 0641.47066] [Google Scholar]
  2. G. AUCHMUTY, 1983, Duality for Non-convex Variational Principles, J. Diff. Equations, 10, 80-145 [MR: 717869] [Zbl: 0533.49007] [Google Scholar]
  3. G AUCHMUTY, 1989, Duality algorithms for nonconvex vanational principles, Numer. Funct. Anal. and Optim., 10, 211-264. [MR: 989534] [Zbl: 0646.49023] [Google Scholar]
  4. P BLANCHARD, E. BRÜNING, 1992, Variational Methods in Mathematical Physics, Springer-Verlag. [MR: 1230382] [Zbl: 0756.49023] [Google Scholar]
  5. I. EKELAND, R. TEMAM, 1974, Analyse Convexe et Problèmes Variationnels, Dunod, Paris [MR: 463993] [Zbl: 0281.49001] [Google Scholar]
  6. I. EKELAND, T. TURNBULL, 1983, Infinite-dimensional Optimization and Convexity, The Univ. of Chicago Press [MR: 769469] [Zbl: 0565.49003] [Google Scholar]
  7. V FOCK, 1930, Nächerungsmethode zur hösung der quantemechanischen Mehrkörper-problems, Z. Phys., 61, 126-148. [JFM: 56.1313.08] [Google Scholar]
  8. J. FROELICH, personal communication. [Google Scholar]
  9. D. GOGNY, P. L. LIONS, 1987, Hartree-Fock theory in Nuclear Physics, RAIRO Modél. Math. Anal. Numér., 20, 571-637 [EuDML: 193491] [MR: 877058] [Zbl: 0607.35078] [Google Scholar]
  10. D. HARTREE, 1928, The wave mechamcs of an atom with a non-Coulomb central field Part I. Theory and methods, Proc. Comb. Phil. Soc., 24, 89-312. [JFM: 54.0966.05] [Google Scholar]
  11. O LADYZHENSKAYA, 1985, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York. [MR: 793735] [Zbl: 0588.35003] [Google Scholar]
  12. L. D LANDAU, E. M LIFSHITZ, 1965, Quantum Mechanics, Pergamon, 2nd ed. [Zbl: 0178.57901] [Google Scholar]
  13. E. H. LIEB, B. SIMON, 1974, On solutions of the Hartree-Fock problem for atoms and molecules, J. Chem. Phys., 61, 735-736. [MR: 408618] [Google Scholar]
  14. E. H. LIEB, B. SIMON, 1977, The Hartree-Fock theory for Coulomb Systems, Comm. Math. Phys., 53, 185-194. [MR: 452286] [Google Scholar]
  15. P. L. LIONS, 1987, Hartree-Fock equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97. [MR: 879032] [Zbl: 0618.35111] [Google Scholar]
  16. P. L. LIONS, 1989, On Hartree and Hartree-Fock equations in atomic and nuclear physics, Comp. Meth. Applied Mech. & Eng., 75, 53-60. [MR: 1035746] [Zbl: 0850.70012] [Google Scholar]
  17. L. DE LOURA, 1986, A Numerical Method for the Hartree Equation of the Helium Atom, Calcolo, 23, 185-207. [MR: 897628] [Zbl: 0613.65139] [Google Scholar]
  18. P. QUENTIN, H. FLOCARD, 1978, Self-consistent Calculations of Nuclear Properties with Phenomenological Effective Forces, Ann. Rev. Nucl. Part. Sci.,28, 523-596. [Google Scholar]
  19. M. REED, B. SIMON, 1980, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York. [MR: 751959] [Zbl: 0405.47007] [Google Scholar]
  20. M. REEKEN, 1970, General Theorem on Bifurcation and its Application to the Hartree Equation of the Helium Atom, J. Math. Phys., 11, 2505-2512. [MR: 279648] [Google Scholar]
  21. J. C. SLATER, 1930, A note on Hartree's Method, Phys. Rev., 35, 210-211. [Google Scholar]
  22. E. ZEIDLER, 1986, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York. [MR: 816732] [Zbl: 0583.47050] [Google Scholar]
  23. E. ZEIDLER, 1985, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York [MR: 768749] [Zbl: 0583.47051] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you