Free Access
Issue
ESAIM: M2AN
Volume 28, Number 5, 1994
Page(s) 575 - 610
DOI https://doi.org/10.1051/m2an/1994280505751
Published online 31 January 2017
  1. J. P. AUBIN, I. EKELAND, 1984, Applied Nonlinear Analysis, Wiley Interscience, New York. [MR: 749753] [Zbl: 0641.47066]
  2. G. AUCHMUTY, 1983, Duality for Non-convex Variational Principles, J. Diff. Equations, 10, 80-145 [MR: 717869] [Zbl: 0533.49007]
  3. G AUCHMUTY, 1989, Duality algorithms for nonconvex vanational principles, Numer. Funct. Anal. and Optim., 10, 211-264. [MR: 989534] [Zbl: 0646.49023]
  4. P BLANCHARD, E. BRÜNING, 1992, Variational Methods in Mathematical Physics, Springer-Verlag. [MR: 1230382] [Zbl: 0756.49023]
  5. I. EKELAND, R. TEMAM, 1974, Analyse Convexe et Problèmes Variationnels, Dunod, Paris [MR: 463993] [Zbl: 0281.49001]
  6. I. EKELAND, T. TURNBULL, 1983, Infinite-dimensional Optimization and Convexity, The Univ. of Chicago Press [MR: 769469] [Zbl: 0565.49003]
  7. V FOCK, 1930, Nächerungsmethode zur hösung der quantemechanischen Mehrkörper-problems, Z. Phys., 61, 126-148. [JFM: 56.1313.08]
  8. J. FROELICH, personal communication.
  9. D. GOGNY, P. L. LIONS, 1987, Hartree-Fock theory in Nuclear Physics, RAIRO Modél. Math. Anal. Numér., 20, 571-637 [EuDML: 193491] [MR: 877058] [Zbl: 0607.35078]
  10. D. HARTREE, 1928, The wave mechamcs of an atom with a non-Coulomb central field Part I. Theory and methods, Proc. Comb. Phil. Soc., 24, 89-312. [JFM: 54.0966.05]
  11. O LADYZHENSKAYA, 1985, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York. [MR: 793735] [Zbl: 0588.35003]
  12. L. D LANDAU, E. M LIFSHITZ, 1965, Quantum Mechanics, Pergamon, 2nd ed. [Zbl: 0178.57901]
  13. E. H. LIEB, B. SIMON, 1974, On solutions of the Hartree-Fock problem for atoms and molecules, J. Chem. Phys., 61, 735-736. [MR: 408618]
  14. E. H. LIEB, B. SIMON, 1977, The Hartree-Fock theory for Coulomb Systems, Comm. Math. Phys., 53, 185-194. [MR: 452286]
  15. P. L. LIONS, 1987, Hartree-Fock equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97. [MR: 879032] [Zbl: 0618.35111]
  16. P. L. LIONS, 1989, On Hartree and Hartree-Fock equations in atomic and nuclear physics, Comp. Meth. Applied Mech. & Eng., 75, 53-60. [MR: 1035746] [Zbl: 0850.70012]
  17. L. DE LOURA, 1986, A Numerical Method for the Hartree Equation of the Helium Atom, Calcolo, 23, 185-207. [MR: 897628] [Zbl: 0613.65139]
  18. P. QUENTIN, H. FLOCARD, 1978, Self-consistent Calculations of Nuclear Properties with Phenomenological Effective Forces, Ann. Rev. Nucl. Part. Sci.,28, 523-596.
  19. M. REED, B. SIMON, 1980, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York. [MR: 751959] [Zbl: 0405.47007]
  20. M. REEKEN, 1970, General Theorem on Bifurcation and its Application to the Hartree Equation of the Helium Atom, J. Math. Phys., 11, 2505-2512. [MR: 279648]
  21. J. C. SLATER, 1930, A note on Hartree's Method, Phys. Rev., 35, 210-211.
  22. E. ZEIDLER, 1986, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York. [MR: 816732] [Zbl: 0583.47050]
  23. E. ZEIDLER, 1985, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York [MR: 768749] [Zbl: 0583.47051]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you