Free Access
Volume 29, Number 3, 1995
Page(s) 367 - 389
Published online 31 January 2017
  1. D. N. ARNOLD, F. BREZZI and M. FORTIN, A stable finite element for the Stokes equations, Calcolo, 21, 1984, pp. 337-344. [MR: 799997] [Zbl: 0593.76039] [Google Scholar]
  2. D. N. ARNOLD and R. S. FALK, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal, 26, 1989, pp. 1276-1290. [MR: 1025088] [Zbl: 0696.73040] [Google Scholar]
  3. M. CROUZEIX and P.-A. RAVIART, Conforming and non-conforming finite element methods for solving the stationary Stokes equations, RAIRO Anal Numér., 7 R-3, 1973, pp. 33-76. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  4. M. DAUGE, Stationary Stokes and Navier-Stokes Systems on two- or three-dimentional domains with corners. Part I : Linearized equations, SIAM J. Math. Anal., 20, 1989, pp. 74-97. [MR: 977489] [Zbl: 0681.35071] [Google Scholar]
  5. J. Jr. DOUGLAS and R. A. MILNER, Interior and superconvergence estimates for mixed methods for second order elliptic problems, RAIRO Modél. Math. Anal. Numér., 19, 1985, pp. 397-428. [EuDML: 193453] [MR: 807324] [Zbl: 0613.65110] [Google Scholar]
  6. M. FORTIN, Calcul numérique des écoulements des fluides de Bingham et des fluides Newtoniens incompressible par des méthodes d'éléments finis, Université de Paris VI, Doctoral thesis, 1972. [Google Scholar]
  7. L. GASTALDI, Uniform interior error estimates for the Reissner-Mindlin plate model, Math. Comp., 61, 1993, pp. 539-567. [MR: 1185245] [Zbl: 0784.73046] [Google Scholar]
  8. P. HOOD and C. TAYLOR, A numerical solution of the Navier-Stokes equations using the finite element technique, Compuh & Fluids, 1, 1973, pp. 73-100. [MR: 339677] [Zbl: 0328.76020] [Google Scholar]
  9. L. MANSFIELD, Finite element subspaces with optimal rates of convergence for stationary Stokes problem, RAIRO Anal. Numér., 16, 1982, pp. 49-66. [EuDML: 193390] [MR: 648745] [Zbl: 0477.65084] [Google Scholar]
  10. J. A. NlTSCHE and A. H. SCHATZ, Interior estimate for Ritz-Galerkin methods, Math. Comp., 28, 1974, pp. 937-958. [MR: 373325] [Zbl: 0298.65071] [Google Scholar]
  11. R. TÉMAM, Navier-Stokes Equations, North-Holland, Amsterdam, 1984. [MR: 603444] [Zbl: 0568.35002] [Google Scholar]
  12. L. B. WAHLBIN, Local Behavior in Finite Element Methods, in Handbook of Numerical Analysis, P. G, Ciarlet and J. L. Lions, eds., Elsevier, Amsterdam-New York, 1991. [MR: 1115238] [Zbl: 0875.65089] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you