Free Access
Issue
ESAIM: M2AN
Volume 29, Number 4, 1995
Page(s) 421 - 434
DOI https://doi.org/10.1051/m2an/1995290404211
Published online 31 January 2017
  1. G. SRANG, 1980, Linear algebra and its applications, Academic Press, New York. [MR: 575349] [Zbl: 0463.15001]
  2. K. J. BATHE and E. L. WlLSON, 1976, Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. [Zbl: 0387.65069]
  3. D. H. F. CHU, 1983, Modal testing and modal refinement, American Society of Mechanical Engineers, New York.
  4. A. BERMAN and W. G. FLANNELY, 1971, Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487.
  5. M. BARUCH and I. Y. BAR-ITZHACK, 1978, Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351.
  6. M. BARUCH, 1978, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. [Zbl: 0395.73056]
  7. F. S. WEI, 1980, Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. [Zbl: 0462.73074]
  8. M. BARUCH, 1982, Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626. [Zbl: 0539.16014]
  9. A. BERMAN and E. J. NAGY, 1983, Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173.
  10. DAI HUA, 1988, Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. [MR: 963565]
  11. DAI HUA, 1994, Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094.
  12. ZHANG LEI, 1987, A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. [MR: 948584] [Zbl: 0641.65037]
  13. ZHANG LEI, 1989, The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. [MR: 1347044] [Zbl: 0973.15008]
  14. LIAO ANPING, 1990, A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. [MR: 1056652] [Zbl: 0850.65075]
  15. WANG JIASONG and CHANG XIAOWEN, 1992, The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. [MR: 1178019] [Zbl: 0756.65058]
  16. R. A. HORN and C. R. JOHNSON, 1985, Matrix analysis, Cambridge University Press, New York. [MR: 832183] [Zbl: 0576.15001]
  17. J. H. WlLKlNSON, 1965, The algebraic eigenvalue problem, Clarendon Press, Oxford. [MR: 184422] [Zbl: 0258.65037]
  18. J. P. AUBIN, 1979, Applied functional analysis, John Wiley, New York. [MR: 549483] [Zbl: 0424.46001]
  19. N. J. HlGHAM, 1988, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. [Zbl: 0649.65026]
  20. J. H. WlLKINSON and C. REINSCH, 1971, Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. [MR: 461856]
  21. F. CHATELIN, 1993, Eigenvalues of matrices, Wiley, Chichester. [MR: 1232655] [Zbl: 0783.65031]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you