Free Access
Volume 29, Number 4, 1995
Page(s) 421 - 434
Published online 31 January 2017
  1. G. SRANG, 1980, Linear algebra and its applications, Academic Press, New York. [MR: 575349] [Zbl: 0463.15001] [Google Scholar]
  2. K. J. BATHE and E. L. WlLSON, 1976, Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. [Zbl: 0387.65069] [Google Scholar]
  3. D. H. F. CHU, 1983, Modal testing and modal refinement, American Society of Mechanical Engineers, New York. [Google Scholar]
  4. A. BERMAN and W. G. FLANNELY, 1971, Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487. [Google Scholar]
  5. M. BARUCH and I. Y. BAR-ITZHACK, 1978, Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351. [Google Scholar]
  6. M. BARUCH, 1978, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. [Zbl: 0395.73056] [Google Scholar]
  7. F. S. WEI, 1980, Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. [Zbl: 0462.73074] [Google Scholar]
  8. M. BARUCH, 1982, Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626. [Zbl: 0539.16014] [Google Scholar]
  9. A. BERMAN and E. J. NAGY, 1983, Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173. [Google Scholar]
  10. DAI HUA, 1988, Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. [MR: 963565] [Google Scholar]
  11. DAI HUA, 1994, Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094. [Google Scholar]
  12. ZHANG LEI, 1987, A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. [MR: 948584] [Zbl: 0641.65037] [Google Scholar]
  13. ZHANG LEI, 1989, The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. [MR: 1347044] [Zbl: 0973.15008] [Google Scholar]
  14. LIAO ANPING, 1990, A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. [MR: 1056652] [Zbl: 0850.65075] [Google Scholar]
  15. WANG JIASONG and CHANG XIAOWEN, 1992, The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. [MR: 1178019] [Zbl: 0756.65058] [Google Scholar]
  16. R. A. HORN and C. R. JOHNSON, 1985, Matrix analysis, Cambridge University Press, New York. [MR: 832183] [Zbl: 0576.15001] [Google Scholar]
  17. J. H. WlLKlNSON, 1965, The algebraic eigenvalue problem, Clarendon Press, Oxford. [MR: 184422] [Zbl: 0258.65037] [Google Scholar]
  18. J. P. AUBIN, 1979, Applied functional analysis, John Wiley, New York. [MR: 549483] [Zbl: 0424.46001] [Google Scholar]
  19. N. J. HlGHAM, 1988, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. [Zbl: 0649.65026] [Google Scholar]
  20. J. H. WlLKINSON and C. REINSCH, 1971, Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. [MR: 461856] [Google Scholar]
  21. F. CHATELIN, 1993, Eigenvalues of matrices, Wiley, Chichester. [MR: 1232655] [Zbl: 0783.65031] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you