Free Access
Issue
ESAIM: M2AN
Volume 29, Number 5, 1995
Page(s) 577 - 603
DOI https://doi.org/10.1051/m2an/1995290505771
Published online 31 January 2017
  1. E. ERIKSSON, C. JOHNSON, Adaptive finite element methods for parabolic problems IV : Nonlinear problems, to appear. [Zbl: 0835.65116]
  2. E. ERIKSSON, C. JOHNSON, V. THOMÉE, Time discretization of parabolic problems by the discontinuous Galerkin method, Math. Modelling and Numer. Anal, 19, 1985, 611-643. [EuDML: 193462] [MR: 826227] [Zbl: 0589.65070]
  3. T. J. R. HUGHES, M. MALLET, A. MIZUKAMI, A new finite element formulation for computational fluid dynamics : II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 1986, 341-355. [MR: 836189] [Zbl: 0622.76074]
  4. T. J. R. HUGHES, M. MALLET, A new finite element formulation for computational fluid dynamics : III. The general streamline operator for multidimensional advective-diffusive Systems, Comput Methods Appl. Mech. Engrg., 58, 1986, 305-328. [MR: 865671] [Zbl: 0622.76075]
  5. T. J. R. HUGHES, M. MALLET, A new finite element formulation for computational fluid dynamics : IV. A discontinuity-capturing operator for multidimensional advective-diffusive Systems, Comput. Methods Appl. Mech. Engrg., 58, 1986, 329-336. [MR: 865672] [Zbl: 0587.76120]
  6. C. JOHNSON, Finite element methods for convection-diffusion problems, in : Computing Methods in Engineering and Applied Sciences V, (R. Glowinski and J. L. Lions, eds.), North-Holland, 1981. [MR: 784648] [Zbl: 0505.76099]
  7. C. JOHNSON, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1987. [MR: 925005] [Zbl: 0628.65098]
  8. C. JOHNSON, U. NÄVERT, An analysis of some finite element methods for advection-diffusion, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, (O. Axelsson, L. S. Frank and A. van der Sluis, eds.), North-Holland, 1981. [MR: 605494] [Zbl: 0455.76081]
  9. C. JOHNSON, U. NÄVERT, J. PITKÄRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 1984, 285-312. [MR: 759811] [Zbl: 0526.76087]
  10. C. JOHNSON, A. H. SCHATZ, L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49, 179, 1987, 25-38. [MR: 890252] [Zbl: 0629.65111]
  11. U. NÄVERT, A finite element method for convection-diffusion problems, Thesis, Chalmers University of Technology, Göteborg, Sweden, 1982.
  12. R. RANNACHER, G. ZHOU, Mesh adaptation via a predictor-corrector strategy in the streamline diffusion method for nonstationary hyperbolic Systems. Proceedings of the 9th GAMM-Seminar Kiel, Eds. W. Hackbusch and G. Wittum, Vieweg Verlag Stuttgart, 1993. [Zbl: 0808.65098]
  13. L. R. SCOTT, S. Y. ZHANG, Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions, Math. Comp., 54, 190, 1990, 483-493. [MR: 1011446] [Zbl: 0696.65007]
  14. J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer Heidelberg, 1983. [MR: 688146] [Zbl: 0508.35002]
  15. G. ZHOU, An adaptive streamline diffusion finite element method for hyperbolic Systems in gas dynamics, Thesis, Heidelberg University, Germany, 1992.
  16. G. ZHOU, Local pointwise error estimates for the streamline diffusion method applied to nonstationary hyperbolic problems, SFB 359 Preprint 93-64, Heidelberg University, 1993. [MR: 1359411] [Zbl: 0837.65100]
  17. G. ZHOU, R. RANNACHER, Mesh orientation and refinement in the streamline diffusion method, SFB 359 Preprint 93-57, Heidelberg University, 1993. [Zbl: 0812.76047]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you