Free Access
Volume 29, Number 7, 1995
Page(s) 779 - 817
Published online 31 January 2017
  1. I. BABUŠKA, A. MILLER, 1981, A posteriori error estimates and adaptive techniques for the finite element method, Univ. of Maryland, Institute for Physical Science and Technology, Tech. Note BN-968, College Park, MD. [Google Scholar]
  2. J. BERGH, J. LÖFSTRÖM, 1976, Interpolation spaces, Springer, Berlin. [MR: 482275] [Zbl: 0344.46071] [Google Scholar]
  3. C. CARSTENSEN, 1993, Interface problem in holonomie elastoplasticity, Math. Meth. in the Appl. Sc.16, 819-835. [MR: 1245631] [Zbl: 0792.73017] [Google Scholar]
  4. C. CARSTENSEN, E. P. STEPHAN, 1996, Adaptive boundary element methods for some first kind integral equations, SIAM J. Numen Anal, (to appear). [MR: 1427458] [Zbl: 0863.65073] [Google Scholar]
  5. C. CARSTENSEN, E. P. STEPHAN, 1993. Coupling of FEM and BEM for a Non-linear Interface Problem ; the h-p Version, Numerical Methods for Partial Differential Equations. (to appear). [MR: 1345759] [Zbl: 0833.65123] [Google Scholar]
  6. P. CLEMENT, 1975, Approximation by finite element functions using local regularization, RAIRO, Ser. Rouge Anal Numer., R-2, pp. 77-84. [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008] [Google Scholar]
  7. M. COSTABEL, 1987, Symmetrie methods for the coupling of finite elements and boundary elements, In : C. A. Brebia et al. (Eds.), Boundary Elements IX, Vol. 1,pp. 411-420, Springer-Verlag, Berlin. [Google Scholar]
  8. M. COSTABEL, 1988, Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. AnaL, 19, pp. 613-626. [Zbl: 0644.35037] [Google Scholar]
  9. M. COSTABEL, E. P. STEPHAN, 1985, A direct boundary integral equation method for transmission problems, J.Math. Anal. Appl., 106, pp. 367-413. [Zbl: 0597.35021] [Google Scholar]
  10. M. COSTABEL, E. P. STEPHAN, 1988, Coupling of finite and boundary elements for inhomogeneous transmission problems in R3, in Mathematics of Finite Elements and Applications VI, ed. J. R, Whiteman, pp.289-296, Academie Press. [Zbl: 0687.73034] [Google Scholar]
  11. M. COSTABEL, E. P. STEPHAN, 1990, Coupling of finite and boundary element methods for an elastoplastic interface problem, SIAM J. Nurnen Anal., 27, pp. 1212-1226. [Zbl: 0725.73090] [Google Scholar]
  12. D. A. DUNVANT, 1995, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Intern. J. Numer. Meth. Engin., 21, pp. 1129-1148. [Zbl: 0589.65021] [Google Scholar]
  13. K. ERIKSSON, C. JOHNSON, 1988, An adaptive finite element method for linear elliptic problems, Math. Comp., 50, pp, 361-383. [Zbl: 0644.65080] [Google Scholar]
  14. K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolicproblems. I. A linear model problem, SIAM J. Numer. Anal., 28, pp. 43-77. [Zbl: 0732.65093] [Google Scholar]
  15. V. ERVIN, N. HEUER, E. P. STEPHAN, On the h-p version of the boundary element method for Symm's integral equation on polygons, To appear in Comput.Meth. Appl. Mech. Engin. [Zbl: 0842.65076] [Google Scholar]
  16. D. GAIER, 1976, Integralgleichungen erster Art und konforme Abbildung, Math.Z, 147, pp. 113-129. [EuDML: 172326] [Zbl: 0304.30006] [Google Scholar]
  17. G. N. GATICA, G. C. HSIAO, 1990, On a class of variational formulations for some nonlinear interface problems, Rendiconti di Mathematica Ser. VII, 10, pp. 681-715. [Zbl: 0767.35019] [Google Scholar]
  18. G. N. GATICA, G. C. HSIAO, 1992, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2, Numer. Math., 61,pp, 171-214. [EuDML: 133617] [MR: 1147576] [Zbl: 0741.65084] [Google Scholar]
  19. H. HAN, 1990, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math., 8, pp. 223-232. [MR: 1299224] [Zbl: 0712.65093] [Google Scholar]
  20. C. JOHNSON, P. HANSEO, 1992, Adaptive finite element methods in computational mechanics. Comput Meth. Appl. Mech. Engin., 101, 143-181. [MR: 1195583] [Zbl: 0778.73071] [Google Scholar]
  21. J. L LIONS, E. MAGENES, 1972, Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York : Springer. [MR: 350177] [Zbl: 0223.35039] [Google Scholar]
  22. J. C. NEDELEC, 1978, La méthode des éléments finis appliquée aux équations intégrales de la physique, First meeting AFCET-SMF on applied mathematics Palaiseau, Vol. 1, pp. 181-190. [Zbl: 0486.45008] [Google Scholar]
  23. F. V. POSTELL, E. P. STEPHAN, 1990, On the h-, p- and h-p versions of the boundary element method-numerical results, Computer Meth. in Appl. Mechanicsand Egin, 83, pp. 69-89. [MR: 1078696] [Zbl: 0732.65101] [Google Scholar]
  24. E. RANK, 1987, Adaptive boundary element methods in ; C. A. Brebbia, W. LWendland and G. Kuhn, eds., Boundary Elements, 9, Vol. 1, pp.259-273, Springer-Verlag, Heidelberg. [MR: 965323] [Google Scholar]
  25. I. H SLOAN, A. SPENCE, 1988, The Galerkin Method for Intégral Equations of thefirst kind with Logarithmic Kernel, Theory, IMA J. Numer. Anal, 8, pp. 105-122. [MR: 967846] [Zbl: 0636.65143] [Google Scholar]
  26. E. P. STEPHAN, W. L. WENDLAND, 1984, An augmented Galerkin Procedure for the boundary integral method applied to two-dimensional screen and crack problems, Applicable Analysis, 18, pp. 183-219. [MR: 767500] [Zbl: 0522.73083] [Google Scholar]
  27. H. H. STROUD, D. SECREST, 1966, Gaussian quadrature formulas, Prentice Hall,Englewood Cliff. [MR: 202312] [Zbl: 0156.17002] [Google Scholar]
  28. R. VERFÜRTH, 1992, A posteriori error estimates for non-linear problems. Finite element discretization of elliptic equations, Preprint. [MR: 1213837] [Google Scholar]
  29. W. L. WENDLAND, 1988, On Asymptotic Error Estimates for Combined BEM and FEM, in Finite and boundary element techniques from mathematical and engineering point of view, CISM Courses 301, E. Stein, W. L. Wendland, eds.,Springer-Verlag New York, pp. 273-331. [MR: 1002581] [Zbl: 0672.65089] [Google Scholar]
  30. W. L. WENDLAND, DE-HAO YU, 1988, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math., 53, pp. 539-558. [EuDML: 133290] [MR: 954769] [Zbl: 0657.65138] [Google Scholar]
  31. W. L. WENDLAND, DE-HAO YU, 1992, A posteriori local error estimates ofboundary element methods with some pseudo-differential equations on closed curves, Journal for Computational Mathematics, 10, 273-289. [MR: 1167929] [Zbl: 0758.65072] [Google Scholar]
  32. E. ZEIDLER, 1990, Nonlinear functional analysis and its applications II, Vol. A and B, Springer-Verlag, New York. [MR: 816732] [Zbl: 0684.47029] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you