Free Access
Volume 30, Number 2, 1996
Page(s) 157 - 183
Published online 31 January 2017
  1. G. D. AKRIVIS, 1992, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math., 63, pp. 1-11. [EuDML: 133665] [MR: 1182508] [Zbl: 0762.65071] [Google Scholar]
  2. G. D. AKRIVIS, 1994, Finite element discretization of the Kuramoto-Sivashinsky equation. Banach Center Publications, 29, pp. 155-163. [EuDML: 262830] [MR: 1272926] [Zbl: 0804.65119] [Google Scholar]
  3. G. AKRIVIS, V. A. DOUGALIS, O. KARAKASHIAN, Solving the Systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods. Submitted. [Zbl: 0869.65060] [Google Scholar]
  4. J. H. BRAMBLE, P. H. SAMMON, 1980, Efficient higher order single step methods for parabolic problems. Part I, Math. Comp., 35, pp. 655-677. [MR: 572848] [Zbl: 0476.65072] [Google Scholar]
  5. P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM, 1989, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, New York, Springer-Verlag. [MR: 966192] [Zbl: 0683.58002] [Google Scholar]
  6. K. DEKKER, J. G. VERWER, 1984, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam, North-Holland. [MR: 774402] [Zbl: 0571.65057] [Google Scholar]
  7. J. M. HYMAN, B. NICOLAENKO, 1986, The Kuramoto-Sivashinsky equation : A bridge betwee PDE'S and dynamical systems, Physica, 18D, pp. 113-126. [MR: 838315] [Zbl: 0602.58033] [Google Scholar]
  8. J. M. JOLLY, I. G. KEVREKIDIS, E. S. TITI, 1990, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation; analysis and computations, Physica, 44D, pp. 38-60. [MR: 1069671] [Zbl: 0704.58030] [Google Scholar]
  9. O. KARAKASHIAN, G. D. AKRIVIS, V. A. DOUGALIS, 1993, On optimal-order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, pp. 377-400. [MR: 1211396] [Zbl: 0774.65091] [Google Scholar]
  10. O. KARAKASHIAN, W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. [MR: 1035935] [Zbl: 0725.65107] [Google Scholar]
  11. I. G. KEVREKIDIS, B. NICOLAENKO, J. C. SCOVEL, 1990, Back in the saddle again; a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50, pp. 760-790. [MR: 1050912] [Zbl: 0722.35011] [Google Scholar]
  12. Y. KURAMOTO, 1978, Diffusion induced chaos in reaction Systems, Progr. Theoret. Phys. Suppl., 64, pp. 346-367. [Google Scholar]
  13. B. NICOLAENKO, B. SCHEURER, 1984, Remarks on the Kuramoto-Sivashinsky equation, Physica, 12D, pp. 391-395. [MR: 762813] [Zbl: 0576.35058] [Google Scholar]
  14. B. NICOLAENKO, B. SCHEURER, R. TEMAM, 1985, Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors, Physica, 16D, pp. 155-183. [MR: 796268] [Zbl: 0592.35013] [Google Scholar]
  15. J. NITSCHE, 1969, Umkehrsätze für Spline-Approximationen, Compositio Mathematica, 21, pp. 400-416. [EuDML: 89031] [MR: 259436] [Zbl: 0199.39302] [Google Scholar]
  16. J. NITSCHE, 1969, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math., 13, pp. 260-265. [EuDML: 131917] [MR: 278532] [Zbl: 0181.18204] [Google Scholar]
  17. R. OSSERMAN, 1978, The isoperimetric inequality, Bulletin of the A.M.S., 84, pp. 1182-1238. [MR: 500557] [Zbl: 0411.52006] [Google Scholar]
  18. D. T. PAPAGEORGIOU, C. MALDARELLI, D. S. RUMSCHITZKI, 1990, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids, A2, pp. 340-352. [MR: 1039780] [Zbl: 0704.76060] [Google Scholar]
  19. D. T. PAPAGEORGIOU, Y. S. SMYRLIS, 1991, The route to chaos for the Kuramoto-Sivashinsky equation, Theoret. Comput. Fluid Dynamics, 3, pp. 15-42. [Zbl: 0728.76055] [Google Scholar]
  20. L. L. SCHUMAKER, 1980, Spline Functions : Basic Theory, New York, John Wiley and Sons, Inc. [MR: 606200] [Zbl: 0449.41004] [Google Scholar]
  21. G. SIVASHINSKY, 1980, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math, 39, pp. 67-72. [MR: 585829] [Zbl: 0464.76055] [Google Scholar]
  22. E. TADMOR, 1986, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal, 17, pp. 884-893. [MR: 846395] [Zbl: 0606.35073] [Google Scholar]
  23. R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, New York : Springer-Verlag. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]
  24. V. THOMÉE, B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11,pp. 1059-1068. [MR: 371088] [Zbl: 0292.65052] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you