Free Access
Issue
ESAIM: M2AN
Volume 30, Number 2, 1996
Page(s) 157 - 183
DOI https://doi.org/10.1051/m2an/1996300201571
Published online 31 January 2017
  1. G. D. AKRIVIS, 1992, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math., 63, pp. 1-11. [EuDML: 133665] [MR: 1182508] [Zbl: 0762.65071]
  2. G. D. AKRIVIS, 1994, Finite element discretization of the Kuramoto-Sivashinsky equation. Banach Center Publications, 29, pp. 155-163. [EuDML: 262830] [MR: 1272926] [Zbl: 0804.65119]
  3. G. AKRIVIS, V. A. DOUGALIS, O. KARAKASHIAN, Solving the Systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods. Submitted. [Zbl: 0869.65060]
  4. J. H. BRAMBLE, P. H. SAMMON, 1980, Efficient higher order single step methods for parabolic problems. Part I, Math. Comp., 35, pp. 655-677. [MR: 572848] [Zbl: 0476.65072]
  5. P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, R. TEMAM, 1989, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, New York, Springer-Verlag. [MR: 966192] [Zbl: 0683.58002]
  6. K. DEKKER, J. G. VERWER, 1984, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam, North-Holland. [MR: 774402] [Zbl: 0571.65057]
  7. J. M. HYMAN, B. NICOLAENKO, 1986, The Kuramoto-Sivashinsky equation : A bridge betwee PDE'S and dynamical systems, Physica, 18D, pp. 113-126. [MR: 838315] [Zbl: 0602.58033]
  8. J. M. JOLLY, I. G. KEVREKIDIS, E. S. TITI, 1990, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation; analysis and computations, Physica, 44D, pp. 38-60. [MR: 1069671] [Zbl: 0704.58030]
  9. O. KARAKASHIAN, G. D. AKRIVIS, V. A. DOUGALIS, 1993, On optimal-order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, pp. 377-400. [MR: 1211396] [Zbl: 0774.65091]
  10. O. KARAKASHIAN, W. MCKINNEY, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473-496. [MR: 1035935] [Zbl: 0725.65107]
  11. I. G. KEVREKIDIS, B. NICOLAENKO, J. C. SCOVEL, 1990, Back in the saddle again; a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50, pp. 760-790. [MR: 1050912] [Zbl: 0722.35011]
  12. Y. KURAMOTO, 1978, Diffusion induced chaos in reaction Systems, Progr. Theoret. Phys. Suppl., 64, pp. 346-367.
  13. B. NICOLAENKO, B. SCHEURER, 1984, Remarks on the Kuramoto-Sivashinsky equation, Physica, 12D, pp. 391-395. [MR: 762813] [Zbl: 0576.35058]
  14. B. NICOLAENKO, B. SCHEURER, R. TEMAM, 1985, Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors, Physica, 16D, pp. 155-183. [MR: 796268] [Zbl: 0592.35013]
  15. J. NITSCHE, 1969, Umkehrsätze für Spline-Approximationen, Compositio Mathematica, 21, pp. 400-416. [EuDML: 89031] [MR: 259436] [Zbl: 0199.39302]
  16. J. NITSCHE, 1969, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math., 13, pp. 260-265. [EuDML: 131917] [MR: 278532] [Zbl: 0181.18204]
  17. R. OSSERMAN, 1978, The isoperimetric inequality, Bulletin of the A.M.S., 84, pp. 1182-1238. [MR: 500557] [Zbl: 0411.52006]
  18. D. T. PAPAGEORGIOU, C. MALDARELLI, D. S. RUMSCHITZKI, 1990, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids, A2, pp. 340-352. [MR: 1039780] [Zbl: 0704.76060]
  19. D. T. PAPAGEORGIOU, Y. S. SMYRLIS, 1991, The route to chaos for the Kuramoto-Sivashinsky equation, Theoret. Comput. Fluid Dynamics, 3, pp. 15-42. [Zbl: 0728.76055]
  20. L. L. SCHUMAKER, 1980, Spline Functions : Basic Theory, New York, John Wiley and Sons, Inc. [MR: 606200] [Zbl: 0449.41004]
  21. G. SIVASHINSKY, 1980, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math, 39, pp. 67-72. [MR: 585829] [Zbl: 0464.76055]
  22. E. TADMOR, 1986, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal, 17, pp. 884-893. [MR: 846395] [Zbl: 0606.35073]
  23. R. TEMAM, 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, New York : Springer-Verlag. [MR: 953967] [Zbl: 0662.35001]
  24. V. THOMÉE, B. WENDROFF, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11,pp. 1059-1068. [MR: 371088] [Zbl: 0292.65052]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you