Free Access
Issue
ESAIM: M2AN
Volume 30, Number 2, 1996
Page(s) 123 - 155
DOI https://doi.org/10.1051/m2an/1996300201231
Published online 31 January 2017
  1. J. L. BOLDRINI, M. A. ROJAS-MEDAR, Strong solutions of the equations for nonhomogeneous asymmetric fluids, to appear. [Zbl: 0842.76001] [MR: 1303166] [Google Scholar]
  2. D. W. CONDIFF, J. S. DAHLER, 1964, Fluid mechanics aspects of antisymmetric stress, Phys. Fluids, 7, number 6, pp. 842-854. [MR: 167060] [Zbl: 0125.15801] [Google Scholar]
  3. J. U. KIM, 1987, Weak solutions of an initial boundary value problem for an incompressible viscous fluid, SIAM J. Math. Anal., 18, pp. 890-96. [MR: 871823] [Zbl: 0626.35079] [Google Scholar]
  4. O. A. LADYZHENSKAYA, 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Second Revised Edition, New York. [MR: 254401] [Zbl: 0184.52603] [Google Scholar]
  5. O. A. LADYZHENSKAYA, V. A. SOLONNIKOV, 1978, Unique solvability of an initial and boundary value problem for viscous incompressible fluids, Zap. Naučn Sem. Leningrado Otdel Math. Inst. Steklov, 52, 1975, pp. 52-109 ; English Transi., J. Soviet Math., 9, pp. 697-749. [Zbl: 0401.76037] [Google Scholar]
  6. [6]G. LUKASZEWICZ, 1988, On nonstationary flows of asymmetrie fluids, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica 106°> XII, fasc. 3, pp. 35-44. [Zbl: 0668.76044] [Google Scholar]
  7. G. LUKASZEWICZ, 1989, On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids, Rendiconti Accademia Nazionale della Scienze detta dei XL, Memorie di Matematica 107 °, XIII, fasc. 6, pp. 105-120. [Zbl: 0692.76020] [Google Scholar]
  8. G. LUKASZEWICZ, 1990, On nonstationary flows of asymmetrie fluids, Math. Methods Appl. Sci., 19, no. 3, pp. 219-232. [Zbl: 0703.76031] [Google Scholar]
  9. L. G. PETROSYAN, Some Problems of Mechanics of Fluids with Antisymmetric Stress Tensor, Erevan, 1984 (in Russian). [Google Scholar]
  10. R. RAUTMANN, 1980, On convergence rate of nonstationary Navier-Stokes approximations, Proc. IUTAM Symp. Approx. Meth., for Navier-Stokes Problem, Lecture Notes in Math., 771, Springer-Verlag. [Zbl: 0434.35074] [Google Scholar]
  11. M. ROJAS-MEDAR, J. L. BOLDRINI, 1993, Spectral Galerkin approximations for the Navier-Stokes Equations : uniform in time error estimates, Rev. Mat. Apl., 14, pp. 1-12. [Zbl: 0788.76063] [Google Scholar]
  12. R. SALVI, 1989, Error estimates for the spectral Galerkin approximations of the solutions of Navier-Stokes type equation, Glasgow Math. J., 31, pp. 199-211. [Zbl: 0693.76040] [Google Scholar]
  13. R. SALVI, 1991, The equations of viscous incompressible nonhomogeneous fluid : on the existence and regularity, J. Australian Math. Soc, Series B - Applied Mathematics, 33, Part 1, pp. 94-110. [Zbl: 0732.76032] [Google Scholar]
  14. J. SIMON, 1990, Nonhomogeneous viscous incompressible fluids : existence of velocity, density, and pressure, SIAM J. Math. Anal, 21, pp. 1093-1117. [Zbl: 0702.76039] [Google Scholar]
  15. R. TEMAM, 1979, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam. [Zbl: 0426.35003] [Google Scholar]
  16. W. VON WAHL, 1985, The equations of Navier-Stokes Equations and Abstract Parabolic Equations, Aspects of Math., 58, Vieweg, Braunschweig-Wiesbaden. [Zbl: 0575.35074] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you