Free Access
Issue
ESAIM: M2AN
Volume 30, Number 5, 1996
Page(s) 637 - 667
DOI https://doi.org/10.1051/m2an/1996300506371
Published online 31 January 2017
  1. M. AZAIEZ, C. BERNARDI and M. GRUNDMANN, 1993, Méthodes spectrales pour les équations du milieu poreux, R 93029, Laboratoire d'Analyse Numérique, Paris VI. [Google Scholar]
  2. J. B. BELL, P. COLELLA and H. M. GLAZ, 1989, A second order projection method for the incompressible Navier-Stokes equations, J. of Comput. Phys., 85, pp. 257-283. [MR: 1029192] [Zbl: 0681.76030] [Google Scholar]
  3. M. BERCOVIER, O. PIRONNEAU, 1979, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33, pp. 211-224. [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058] [Google Scholar]
  4. C. BERNARDI, Y. MADAY, 1992, Approximations spectrales des problèmes aux limites elliptiques, Mathématiques et Applications, 10, Springer-Verlag. [MR: 1208043] [Zbl: 0773.47032] [Google Scholar]
  5. F. BREZZI, 1974, On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., R.2, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  6. J. CAHOUET, J.- P. CHABARD, 1988, Some fast 3-D finite element solvers for generahzed Stokes problem, Int. J. Num. Meth. in Fluids, 8, pp. 269-295. [MR: 953141] [Zbl: 0665.76038] [Google Scholar]
  7. C. CANUTO, A. QUARTERONI, 1982, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38, pp. 67-86. [MR: 637287] [Zbl: 0567.41008] [Google Scholar]
  8. A. CHORIN, 1968, Numerical simulation of the Navier-Stokes equations, Math. Comp., 22, pp. 745-762. [MR: 242392] [Zbl: 0198.50103] [Google Scholar]
  9. J. DONEA, S. GlULIANI, H. LAVAL, L. QUARTAPELLE, 1982, Finite element solution of the unsteady Navier-Stokes equations by a fractional step method, Comput. Meths. Appl. Mech. Engrg., 30, pp. 53-73. [Zbl: 0481.76037] [Google Scholar]
  10. V. GIRAULT and P.-A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, 5, Springer-Verlag. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  11. K. GODA, 1979, A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows, J. of Comput. Phys., 30, pp. 76-95. [Zbl: 0405.76017] [Google Scholar]
  12. P. M. GRESHO and S. T. CHAN, 1990, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via finite element method that also introduces a nearly consistent mass matrix. Part I and Part II, Int. J. Numer. Methods Fluids, 11, pp. 587-620. [MR: 1074825] [Zbl: 0712.76035] [Google Scholar]
  13. J.- L. GUERMOND, 1994, Sur l'approximation des équations de Navier-Stokes instationnaires par une méthode de projection, C. R. Acad. Sc. Paris, Série I, 319, pp. 887-892. [MR: 1300962] [Zbl: 0813.76066] [Google Scholar]
  14. J.-L. GUERMOND, 1994, Perturbations singulières des problèmes de point selle et préconditionnement du problème de Stokes, Modél. Math. Anal. Numér., 28, 3, pp. 357-374. [EuDML: 193743] [MR: 1275349] [Zbl: 0822.65090] [Google Scholar]
  15. J.-L. GUERMOND, 1994, Remarques sur les méthodes de projection pour l'approximation des équations de Navier-Stokes, Numer. Math., 67, pp. 465-473. [MR: 1274442] [Zbl: 0802.76057] [Google Scholar]
  16. J.- L. GUERMOND and L. QUARTAPELLE, 1995, On the approximation of the unsteady Navier Stokes equations by finite element projection methods, submitted to Numer. Math. and LIMSI reports 95-06, 95-14. [MR: 1645029] [Zbl: 0914.76051] [Google Scholar]
  17. G. LABADIE, P. LASBLEIZ, 1983, Quelques méthodes de résolution du problème de Stokes en éléments finis, E. D. F. rapport HE41/83. 01. [Google Scholar]
  18. J.-L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et applications, Dunod, Paris [Zbl: 0165.10801] [Google Scholar]
  19. L. QUARTAPELLE, 1993, Numerical solution of the incompressible Navier-Stokes equations, ISNM 113, Birkhäuser, Basel. [MR: 1266843] [Zbl: 0784.76020] [Google Scholar]
  20. R. RANNACHER, 1992, On Chorin's projection method for the incompressible Navier-Stokes equations, Lectures Notes in Mathematics, 1530, Springer, Berlin, pp. 167-183. [MR: 1226515] [Zbl: 0769.76053] [Google Scholar]
  21. J. SHEN, 1992, On error estimates of projection methods for Navier-Stokes equations : first-order schemes, SIAM J. Numer. Anal., 29, 1, pp. 57-77. [MR: 1149084] [Zbl: 0741.76051] [Google Scholar]
  22. R. TEMAM, 1977, Navier-Stokes Equations, Studies in Mathematics and its Applications, 2, North-Holland. [MR: 609732] [Zbl: 0383.35057] [Google Scholar]
  23. R. TEMAM, 1968, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France, 98, pp. 115-152. [EuDML: 87104] [MR: 237972] [Zbl: 0181.18903] [Google Scholar]
  24. R. TEMAM, 1991, Remark on the pressure boundary condition for the projection method, Theoret. Comput. Fluid Dynamics, 3, pp. 181-184. [Zbl: 0738.76054] [Google Scholar]
  25. J. VAN KAN, 1986, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 3, pp. 870-891. [MR: 848569] [Zbl: 0594.76023] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you