Free Access
Volume 30, Number 6, 1996
Page(s) 743 - 762
Published online 31 January 2017
  1. M. ASADZADEH, 1986, Convergence Analysis of Some Numencal Methods for Neutron Transport and Vlasov Equations, Ph. D. thesis, Chalmers University of Technology, Göteborg, Sweden. [Google Scholar]
  2. L. H. AUER, 1984, Difference equations and linearization methods for radiative transfer methods in radiative transfer, Methods in Radiative Transfer, W. Kalk-ofen ed., Cambridge. [Google Scholar]
  3. C. CARSTENSEN, E. STEPHAN, A posteriori Estimates tor Boundary Element Methods, to appear in Math. Comp. [MR: 1320892] [Zbl: 0831.65120] [Google Scholar]
  4. K. ERIKSSON, C. JOHNSON, 1988, An adaptive finite element method tor linear elliptic problems, Math. Comp., 50, pp. 361-383. [MR: 929542] [Zbl: 0644.65080] [Google Scholar]
  5. K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolic problems I : A linear model problem, SIAM. J. Num. Anal., 28, pp. 43-77. [MR: 1083324] [Zbl: 0732.65093] [Google Scholar]
  6. C. FUHRER, 1993, Finite-Elemente-Diskretisterungen zur Lösung der 2D-Strahlungstransportgleiehung, Diploma thesis, Heidelberg University. [Google Scholar]
  7. C. FUHRER, 1993, A comparative study on finite element solvers for hyperbolic problems with applications to radiative transfer, Preprint 93-65, SFB 359, Heidelberg University. [Google Scholar]
  8. C. FUHRER, G. KANSCHAT, 1994, Error control in radiative transfer, Preprint, Heidelberg University, 6/94 to appear in Computing. [Zbl: 0880.65125] [MR: 1461969] [Google Scholar]
  9. I. GRAHAM, 1982, Galerkin methods for second kind integral equations with singularities, Math. Comp., 39, pp. 519-533. [MR: 669644] [Zbl: 0496.65068] [Google Scholar]
  10. W. HACKBUSCH, 1989, Integralgleichungen - Theorie und Numerik, Teubner, Stuttgart. [MR: 1010893] [Zbl: 0681.65099] [Google Scholar]
  11. C. JOHNSON, J. PITKARANTA, 1983, Convergence of a fuily discrete scheme for two-dimensional neutron transport, SIAM J. Num. Anal., 20, pp. 951-966. [MR: 714690] [Zbl: 0538.65097] [Google Scholar]
  12. S. G. MlKHLIN, 1965, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford. [MR: 185399] [Zbl: 0129.07701] [Google Scholar]
  13. P. NELSON, H. P. VICTORY 1980, Convergence of two-dimensional Nyström discrete ordinales in solving the linear transport equation, Num. Anal., 34, pp. 353-370. [EuDML: 132678] [MR: 577403] [Zbl: 0414.65074] [Google Scholar]
  14. J. NlTSCHE, A. SCHATZ, 1974, Interior estimates for Ritz-Galerkin methods, Math. Comp., 28, pp. 937-958. [MR: 373325] [Zbl: 0298.65071] [Google Scholar]
  15. PAPKALLA R., 1993, Linienentstehung in Akkretionsscheiben, Ph. D. thesis, Heidelberg University. [Google Scholar]
  16. J. PlTKARÄNTA, 1979, On the differential properties of solutions to Fredholm equations with weakly singular kernels, J. Inst. Math. Appl., 24, pp. 109-119. [MR: 544428] [Zbl: 0423.45004] [Google Scholar]
  17. I. SLOAN, V. THOMÉE, 1985, Superconvergence of the Galerkin iterates forintegral equations of the second kind, J. Int. Eqs., 9, pp. 1-230. [MR: 793101] [Zbl: 0575.65131] [Google Scholar]
  18. S. TUREK, 1995 A generalized mean intensity approach for the numerical solution of the radiative transfer equation, Computing, 54, Nr. 1, 27-38. [MR: 1314954] [Zbl: 0822.65129] [Google Scholar]
  19. W. L. WENDLAND, YU DE-HAO, 1992 A posteriori local error estimates of boundary element methods with some pseudo differential equations on closed curves, J. Comp. Math. 10, Nr. 3, pp. 273-289. [MR: 1167929] [Zbl: 0758.65072] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you