Free Access
Issue
ESAIM: M2AN
Volume 31, Number 1, 1997
Page(s) 1 - 25
DOI https://doi.org/10.1051/m2an/1997310100011
Published online 31 January 2017
  1. R. A. ADAMS, 1975, Sobolev Spaces, Academic Press, New York. [MR: 450957] [Zbl: 0314.46030]
  2. L. BERS, F. JOHN and M. SCHECHTER, 1964, Partial Differential Equations, John Wiley & Sons, New York. [MR: 162045] [Zbl: 0126.00207]
  3. P. G. CIARLET, 1978, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. [MR: 520174] [Zbl: 0383.65058]
  4. B. E. J. DAHLBERG, C. E. KENIG and G. C. VERCHOTA, 1988, Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 57, pp. 795-818. [MR: 975122] [Zbl: 0699.35073]
  5. R. DAUTRAY and J. L. LIONS, 1990, Mathematical Analysis and Numencal Methods for Science and Technology, I, Springer-Verlag, New York. [Zbl: 0683.35001]
  6. B. DESPRÉS, 1991, Méthodes de décomposition de domaines pour les problèmes de propagation d'ondes en régime harmonique, Ph. D. Thesis, Université Paris IX Dauphine, UER Mathématiques de la Decision. [Zbl: 0849.65085]
  7. B. DESPRÉS, P. JOLY and J. E. ROBERTS, A domain decomposition method for the harmonie Maxwell equations, Itérative Methods in Linear Algebra, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, pp. 475-484, R. Beauwens and P. de Groen, eds. [MR: 1159757] [Zbl: 0785.65117]
  8. J. DOUGLAS Jr, P. J. S. PAES LEME, J. E. ROBERTS and J. WANG, 1993, A parallel iterative procedure applicable to the approximate solution of second order partial differential e-quations by mixed finite element methods, Numer. Math., 65, pp.95-108. [EuDML: 133725] [MR: 1217441] [Zbl: 0813.65122]
  9. J. DOUGLAS Jr and J. E. ROBERTS, 1982, Mixed finite element methods for second order elliptic problems, Matemática Aplicada e Computacional, 1, pp. 91-103. [MR: 667620] [Zbl: 0482.65057]
  10. G. DUVAUT and J. L. LIONS, 1976, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin. [MR: 521262] [Zbl: 0331.35002]
  11. X. FENG, 1992, On miscible displacement in porous media and absorbing boundary conditions for electromagnetic wave propagation and on elastic and nearly elastic waves in the frequency domam, Ph. D. Thesis, Purdue University, 1992.
  12. X. FENG, A mixed finite element domam decomposition method for nearly elastic waves in the frequency domain (submitted).
  13. X. FENG, A domain decomposition method for convection-dominated convection-diffusion equations, preprint.
  14. P. GRISVARD, 1992, Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22, Springer-Verlag and Masson. [MR: 1173209] [Zbl: 0766.35001]
  15. F. JOHN, 1982, Partial Differential Equations, Fourth Edition, Springer-Verlag, New York. [MR: 831655]
  16. C. E. KENIG, 1994, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics, No. 83, American Mathematical Society. [MR: 1282720] [Zbl: 0812.35001]
  17. S. KIM, 1994, A parallelizable iterative procedure for the Helmholtz problem, Appl. Numer. Math., 14, pp. 435-449. [MR: 1285471] [Zbl: 0805.65100]
  18. V. D. KUPRADZE, 1965, Potential Methods in the Theory of Elasticity, Israel Program for Scientiflc Translations, Jerusalem. [MR: 223128] [Zbl: 0188.56901]
  19. P. LESAINT, 1976, On the convergence of Wilson's nonconforing element for solving the elastic problem, Comput. Methods Appl. Mech. Engrg, 7, pp. 1-16. [MR: 455479] [Zbl: 0345.65058]
  20. J. L LIONS, 1955, Contributions à un problème de M. M. Picone, Ann. Mat. Pura e Appl., 41, pp. 201-215. [MR: 89978] [Zbl: 0075.10103]
  21. J. L. LIONS and E. MAGENES, 1972, Nonhomogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York. [Zbl: 0223.35039]
  22. P. L. LIONS, 1988, 1988, On the Schwartz alternatmg method I, III, First and Third International Symposium on Domain Decomposition Method for Partial Differential Equations, SIAM, Philadelphia. [MR: 972510]
  23. L. D. MARINI and A. QUARTERONI, 1989, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math., 55, pp. 575-598. [EuDML: 133372] [MR: 998911] [Zbl: 0661.65111]
  24. J. A. NITSCHE, 1981, On Korn's second inequality, R.A.I.R.O Anal. Numér., 15, pp. 237-248. [EuDML: 193380] [MR: 631678] [Zbl: 0467.35019]
  25. C. L. RAVAZZOLI, J. DOUGLAS Jr, J. E. SANTOS and D. SHEEN, 1992, On the solution of the equations of motion for nearly elastic solids in the frequency domain, Proceedings of the IV Reunion de Trabajo en Procesamiento de la Información y Control, Centro de Cálculo Cientifico, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, November 1991, or Technical Report #164, Center for Applied Mathematics, Purdue University.
  26. A. SCHATZ, 1974, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp, 28, pp. 959-962. [MR: 373326] [Zbl: 0321.65059]
  27. J.-M. THOMAS, 1977, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'État, Université Pierre et Marie Curie, Paris.
  28. J. E. WHITE, 1965, Seismic Waves, Radiation, Transmission and Attenuation, McGraw-Hill.
  29. E. L. WILSON, R. L. TAYLOR, W. P. DOHERTY and J. GHABOUSSI, 1971, Incompatible displacement models, Symposium on Numerical and Computer Methods in Structural Engineering, O.N.R., University of Illinois.
  30. J. XU, 1992, Iterative methods by space decomposition and subspace correction, SIAM Review, 34, pp, 581-613. [MR: 1193013] [Zbl: 0788.65037]
  31. K. YOSIDA, 1980, Functional Analysis, Springer-Verlag, Berlin-New York. [MR: 617913] [Zbl: 0435.46002]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you