Free Access
Volume 31, Number 1, 1997
Page(s) 27 - 55
Published online 31 January 2017
  1. [AAPQS] V. I. AGOSHKOV,D. AMBROSI, V. PENNATI, A. QUARTERONI, F. SALERI, Mathematical and numerical modelling of Shallow-Water flow, To appear. [MR: 1221200] [Zbl: 0771.76032] [Google Scholar]
  2. [BP] C. BERNARD, O. PIRONNEAU, 1991, On the shallow Water Equations at Low Reynolds Number, Commun. in Partial Differential Equations, 16(1), pp. 59-104. [MR: 1096834] [Zbl: 0723.76033] [Google Scholar]
  3. [B] H. BREZIS, 1981, Analyse fonctionnelle, Théorie et Application, Collection Mathématiques appliquée pour la maîtrise, Masson. [MR: 697382] [Zbl: 0511.46001] [Google Scholar]
  4. [DL] R. DAUTREY, J. L. LIONS, Analyse Mathématique et Calcul Numérique pour les Sciences et Techniques, Collection CEA, Masson. [Zbl: 0642.35001] [Google Scholar]
  5. [DPL1] R. J. DIPERNA, P. L. LIONS, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, pp. 511-547. [EuDML: 143741] [MR: 1022305] [Zbl: 0696.34049] [Google Scholar]
  6. [DPL2] R. J. DIPERNA, P. L. LIONS, 1988, On the Cauchy problem for Boltzman equations : global existence and weak stability, C. R. Acad. Sci. Paris, 306, pp. 343-346. [MR: 934615] [Zbl: 0662.35016] [Google Scholar]
  7. [DPL3] R. J. DIPERNA, P. L. LIONS, 1990, Global weak solutions of Kinetic equations, Deminario Matematico, Tonno. [Zbl: 0813.35087] [Google Scholar]
  8. [GT] D. GlLBARG, N. S. TRUDINGER, 1983, Elliptic partial differential equations of second order, Springer Verlag, Berlin. [MR: 737190] [Zbl: 0562.35001] [Google Scholar]
  9. [GR] V. GlRAULT, P. A. RAVIART, 1986, Finite Element Method for Navier-Stokes Equations, Springer Verlag. [MR: 540128] [Google Scholar]
  10. [HO] A. HERTZOG, P. ORENGA, Existence et unicité d'un problème de mécanique des fluides intervenant en Océanographie Physique, C. R. Acad. Sci. Paris., 313, Série I. [Zbl: 0735.76026] [Google Scholar]
  11. [LM] J. L. LIONS, E. MAGENES, 1972, Problèmes aux limites non homogènes et applications, Dunod. [Zbl: 0165.10801] [Google Scholar]
  12. [L] J. L. LIONS, 1969, Quelques méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  13. [LTW] J. L. LIONS, R. TEMAM, S. WANG, 1992, On the equation of the large scale ocean, Non linearity, 5, pp. 1007-1053. [MR: 1187737] [Zbl: 0766.35039] [Google Scholar]
  14. [N] J. J. C. NIHOUL, 1982, Hydrodynamic models of shallow continental seas, Application to the North Sea, Etienne Riga, éditeur. [Google Scholar]
  15. [O1] ORENGA P., 1991, Analyse de quelques problèmes en océanographie physique, Thèse d'Habilitation, Univ. de Corse. [Google Scholar]
  16. [O2] ORENGA P., 1994, Un théorème d'existence de solutions d'un problème de Shallow Water, Accepted by Archive Rational Mech. Anal., Univ. de Corse. [Zbl: 0839.76007] [Google Scholar]
  17. [OCF] ORENGA P., CHATELON F. J., FLUIXA C., 1995, Analysis of some oceanography physics problems by the Galerkin's method, NATO Advanced Study, The mathematics of models for climatology and environment. [Zbl: 0891.76067] [Google Scholar]
  18. [T] TEMAM R., 1977, Navier-Stokes Equations, theory and numerical analysis, North Holland Pubhshmg Company. [MR: 609732] [Zbl: 0426.35003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you