Free Access
Volume 31, Number 2, 1997
Page(s) 185 - 211
Published online 31 January 2017
  1. C. GUILLOPÉ & J. C. SAUT, 1990, "Global existence and one-dimensional non linear stabihty of shearing motions of viscoelastic fluids of Oldroyd type", M2AN Vol 24, n° 3, 369-401. [EuDML: 193600] [MR: 1055305] [Zbl: 0701.76011] [Google Scholar]
  2. R. W. KOLKKA, G. R. IERLEY, M. G. HANSEN & R. A. WORTHING, 1987, "On the stability of viscoelastic parallel shear flows", Technical Report, F.R.O.G. Michigan Technological University. [Google Scholar]
  3. C. GUILLOPÉ & J. C. SAUT, 1990, "Existence results for the flow of viscoelastic fluids with a differential constitutive law". Nonlinear Analysis Theory, Methods & Applications, Vol. 15, No 9, 849-869. [MR: 1077577] [Zbl: 0729.76006] [Google Scholar]
  4. R. J. GORDON & SCHOWALTER, 1972, Trans. Soc. Rheol., 16, 79. [Zbl: 0368.76006] [Google Scholar]
  5. L. A. DÀVALOS-OROZCO, 1992, "Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer", J. Non-Newtonian Fluid Mech., 45, 171-186. [Zbl: 0761.76021] [Google Scholar]
  6. M. RENARDY & Y. RENARDY, 1986, "Linear stability of plane Couette flow of an Upper Convected Maxwell fluid", J. Non-Newtonian Fluid Mech., 22, 23-33. [Zbl: 0608.76006] [Google Scholar]
  7. G. M. WILSON & B. KHOMAMI, 1992, "An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. I. Incompatible polymer Systems", J. Non-Newtonian Fluid Mech., 45, 355-384. [Google Scholar]
  8. H. LE MEUR, 1994, Existence, unicité et stabilité d'écoulements de fluides viscoélastiques avec interface, PhD Thesis of University Paris-Sud Orsay. [Google Scholar]
  9. D. D. JOSEPH, Fluid dynamics of Visco Elastic liquids, Applied Mathematical Sciences 84 Springer Verlag. [MR: 1051193] [Zbl: 0698.76002] [Google Scholar]
  10. D. D. JOSEPH, 1976, Stability of fluid motions, Vol. I, II Springer. [Zbl: 0345.76023] [Google Scholar]
  11. N. PHAN-THIEN & R. I. TANNER, 1977, "A new constitutive equation derived from network theory", J. Non-Newtonian Fluid Mech, 2, 353-365. [Zbl: 0361.76011] [Google Scholar]
  12. R. I. TANNER, Viscoélasticité non linéaire : Rhéologie et modélisation numérique, Ecoles CEA-EDF-INRIA, 27-30/01/ 1992. [Google Scholar]
  13. R. KEUNINGS & M. J. CROCHET, 1984, "Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction", J. Non Newtonian Fluid Mech., 14, 279 299. [Zbl: 0531.76013] [Google Scholar]
  14. M. RENARDY, "On the linear stability of parallel shear flows of viscoelastic fluids of Jeffreys type". to appear. [Google Scholar]
  15. M. RENARDY, 1993, "On the type of certain C0 Semigroups", Comm. Part. Diff. Eq., 18 (7 & 8), 1299-1307. [MR: 1233196] [Zbl: 0801.47029] [Google Scholar]
  16. P. HENRICI, 1974, Applied and Computational Complex Analysis, vol. I, John Wiley, New-York. [MR: 372162] [Zbl: 0313.30001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you