Free Access
Issue
ESAIM: M2AN
Volume 31, Number 2, 1997
Page(s) 213 - 249
DOI https://doi.org/10.1051/m2an/1997310202131
Published online 31 January 2017
  1. R. A. ADAMS, 1975, Sobolev spaces. Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030]
  2. J. J. AMBROSIANO, S. T. BRANDON and E. SONNENDRUCKER, 1995, A finite element formulation of the Darwin PIC model for use on unstructured grids J. Comput. Physics, 121(2), 281-297. [MR: 1354305] [Zbl: 0834.76052]
  3. I. BABUSKA, 1973, The finite element method with Lagrange multipliers Numer. Math, 20, 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108]
  4. M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for the finite element method solution of the Stokes problem in the primitive variables Numer. Math., 33, 211-224. [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058]
  5. F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer., 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  6. F. BREZZI and M. FORTIN, 1991, Mixed and hybrid finite element methods. Springer-Verlag, Berlin. [MR: 1115205] [Zbl: 0788.73002]
  7. P. CIARLET, 1978, The finite element method for elliptic problems. North-Holland, Amsterdam. [MR: 520174] [Zbl: 0383.65058]
  8. P. DEGOND and P. A. RAVIART, 1992, An analysis of the Darwin model of approximation to Maxwell's equations Forum Math., 4, 13-44. [EuDML: 141662] [MR: 1142472] [Zbl: 0755.35137]
  9. V. GIRAULT and P.-A. RAVIART, 1986, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin. [MR: 851383] [Zbl: 0585.65077]
  10. P. GRISVARD, 1985, Elliptic problems in nonsmooth domains. Pitman, Advanced Pubhshing Program, Boston. [MR: 775683] [Zbl: 0695.35060]
  11. D. W. HEWETT and J. K. BOYD, 1987, Streamlined Darwin simulation of nonneutral plasmas. J. Comput. Phys., 73, 166-181. [MR: 888935] [Zbl: 0611.76133]
  12. D. W. HEWETT and C. NIELSON, 1978, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219-236. [Zbl: 0388.76108]
  13. P. HOOD and G. TAYLOR, 1974, Navier-Stokes equation using mixed interpolation. In Oden, editor, Finite element methods in flow problems. UAH Press.
  14. J.-L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et applications. Dunod, Paris. [Zbl: 0165.10801]
  15. J.-C. NEDELEC, 1980, Mixed finite éléments in R3. Numer. Math., 35, 315-341. [EuDML: 186293] [MR: 592160] [Zbl: 0419.65069]
  16. J.-C. NEDELEC, 1982, Eléments finis mixtes incompressibles pour l'équation de Stokes dans R3. Numer. Math., 39, 97-112. [EuDML: 132783] [MR: 664539] [Zbl: 0488.76038]
  17. C. NlELSON and H. R. LEWIS, 1976, Particle code models in the non radiative limit. Methods Comput. Phys., 16, 367-388.
  18. P.-A. RAVIART, 1993, Finite element approximation of the time-dependent Maxwell equations. Technical report, Ecole Polytechnique, France, GdR SPARCH #6.
  19. R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer., 18(2), 175-182. [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037]
  20. C. WEBER, 1980, A local compactness theorem for Maxwell's equations. Math. Meth. in the Appl. Sci., 2, 12-25. [MR: 561375] [Zbl: 0432.35032]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you