Free Access
Volume 31, Number 2, 1997
Page(s) 213 - 249
Published online 31 January 2017
  1. R. A. ADAMS, 1975, Sobolev spaces. Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. J. J. AMBROSIANO, S. T. BRANDON and E. SONNENDRUCKER, 1995, A finite element formulation of the Darwin PIC model for use on unstructured grids J. Comput. Physics, 121(2), 281-297. [MR: 1354305] [Zbl: 0834.76052] [Google Scholar]
  3. I. BABUSKA, 1973, The finite element method with Lagrange multipliers Numer. Math, 20, 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  4. M. BERCOVIER and O. PIRONNEAU, 1979, Error estimates for the finite element method solution of the Stokes problem in the primitive variables Numer. Math., 33, 211-224. [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058] [Google Scholar]
  5. F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer., 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  6. F. BREZZI and M. FORTIN, 1991, Mixed and hybrid finite element methods. Springer-Verlag, Berlin. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  7. P. CIARLET, 1978, The finite element method for elliptic problems. North-Holland, Amsterdam. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  8. P. DEGOND and P. A. RAVIART, 1992, An analysis of the Darwin model of approximation to Maxwell's equations Forum Math., 4, 13-44. [EuDML: 141662] [MR: 1142472] [Zbl: 0755.35137] [Google Scholar]
  9. V. GIRAULT and P.-A. RAVIART, 1986, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  10. P. GRISVARD, 1985, Elliptic problems in nonsmooth domains. Pitman, Advanced Pubhshing Program, Boston. [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
  11. D. W. HEWETT and J. K. BOYD, 1987, Streamlined Darwin simulation of nonneutral plasmas. J. Comput. Phys., 73, 166-181. [MR: 888935] [Zbl: 0611.76133] [Google Scholar]
  12. D. W. HEWETT and C. NIELSON, 1978, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219-236. [Zbl: 0388.76108] [Google Scholar]
  13. P. HOOD and G. TAYLOR, 1974, Navier-Stokes equation using mixed interpolation. In Oden, editor, Finite element methods in flow problems. UAH Press. [Google Scholar]
  14. J.-L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et applications. Dunod, Paris. [Zbl: 0165.10801] [Google Scholar]
  15. J.-C. NEDELEC, 1980, Mixed finite éléments in R3. Numer. Math., 35, 315-341. [EuDML: 186293] [MR: 592160] [Zbl: 0419.65069] [Google Scholar]
  16. J.-C. NEDELEC, 1982, Eléments finis mixtes incompressibles pour l'équation de Stokes dans R3. Numer. Math., 39, 97-112. [EuDML: 132783] [MR: 664539] [Zbl: 0488.76038] [Google Scholar]
  17. C. NlELSON and H. R. LEWIS, 1976, Particle code models in the non radiative limit. Methods Comput. Phys., 16, 367-388. [Google Scholar]
  18. P.-A. RAVIART, 1993, Finite element approximation of the time-dependent Maxwell equations. Technical report, Ecole Polytechnique, France, GdR SPARCH #6. [Google Scholar]
  19. R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer., 18(2), 175-182. [EuDML: 193431] [MR: 743884] [Zbl: 0557.76037] [Google Scholar]
  20. C. WEBER, 1980, A local compactness theorem for Maxwell's equations. Math. Meth. in the Appl. Sci., 2, 12-25. [MR: 561375] [Zbl: 0432.35032] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you