Free Access
Issue
ESAIM: M2AN
Volume 31, Number 5, 1997
Page(s) 599 - 614
DOI https://doi.org/10.1051/m2an/1997310505991
Published online 31 January 2017
  1. N. ACHTAICH, 1986, Injections de type Sobolev. Cras Paris, t. 303, série I. [MR: 854730] [Zbl: 0602.46031]
  2. R. ADAMS, 1975, Sobolev spaces. Academic press. [MR: 450957] [Zbl: 0314.46030]
  3. A. AMBROSETTI and P. H. RABINOWITZ, 1973, Dual variational methods in critical point. Theory and applications. Journal of functional Analysis, 14, 349-381. [MR: 370183] [Zbl: 0273.49063]
  4. C. BANDLE and A. BRILLARD, 1994, Nonlinear elliptic equations involving critical Sobolev exponents : asymptotic analysis via methods of epi-convergence. Zeitschrift fur Analysis und ihre Anwendungen, Journal of analysis and its applications, Volume 13, n° 2, pp. 1-13. [MR: 1305597] [Zbl: 0808.35031]
  5. H. BREZIS, 1983, Analyse fonctionnelle. Théorie et applications, Masson. [MR: 697382] [Zbl: 0511.46001]
  6. H. BREZIS, 1986, Elliptic Equations with limiting Sobolev exponents. The impact of topology. Pure Appl Math., 39, pp. 17-39. [MR: 861481] [Zbl: 0601.35043]
  7. H. BREZIS and L. NIRENBERG, 1983, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math., 36, pp. 437-477. [MR: 709644] [Zbl: 0541.35029]
  8. P. G. CIARLET, 1982, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson. [MR: 680778] [Zbl: 0488.65001]
  9. J. M. CORON, 1984, Topologie et cas limite des injections de Sobolev. Cras Paris, t. 299, série I. [MR: 762722] [Zbl: 0569.35032]
  10. I. EKLAND and R. TEMAM, 1973, Analyse convexe et problèmes variationnels. Dunod. [Zbl: 0281.49001]
  11. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (Paris 69). [Zbl: 0189.40603]
  12. P. L. LIONS, 1982, On the existence of positive solutions of semilinear elliptic equations. SIAM Reviews 24, pp. 441-467. [MR: 678562] [Zbl: 0511.35033]
  13. B. MERCIER and G. RAUGEL, 1982, Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en Θ. RAIRO (Analyse Numérique). Vol. 16. [EuDML: 193405] [MR: 684832] [Zbl: 0531.65054]
  14. D. SERRE, Triplets de solutions d'une équation aux dérivées partielles elliptiques non linéaires. Lectures notes in Mathematics 782. Springer Verlag. [Zbl: 0437.35002]
  15. F. de THELIN, 1984, Quelques résultats d'existence et de non existence pour une E.D.P. elliptique non linéaire. Cras Paris, t. 299, série I. [Zbl: 0575.35030]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you