Free Access
Issue |
ESAIM: M2AN
Volume 31, Number 7, 1997
|
|
---|---|---|
Page(s) | 827 - 844 | |
DOI | https://doi.org/10.1051/m2an/1997310708271 | |
Published online | 31 January 2017 |
- C. H. BRUNEAU, C. JOURON, 1990, An efficient scheme for solving steady incompressible Navier-Stokes equation. J. Comp. Phys., 89, 389-413. [Zbl: 0699.76034] [Google Scholar]
- J. P. CHEHAB, 1993, Méthodes des inconnues incrémentales. Applications au calcul des bifurcations. Thèse de l'Université Paris-Sud, Orsay. [Google Scholar]
- M. CHEN, R. TEMAM, 1993, Nonlinear Galerkin Method in the finite difference case and the wavelet-like incremental unknows, Numer. Math., 64, 271-294. [EuDML: 133706] [MR: 1206665] [Zbl: 0798.65093] [Google Scholar]
- M. CHEN, R. TEMAM, 1993, Incremental unknowns in finite differences: condition number of the matrix. SIAM J. Matrix Anal. Appl., 14, 432-455. [MR: 1211799] [Zbl: 0773.65080] [Google Scholar]
- M. CHEN, A. MIRANVILLE, R. TEMAM, 1994, Incremental Unknowns in the finite differences in the three space dimensions. Submitted to Mathematica Aplicada e Computacional. [Zbl: 0841.65089] [MR: 1384185] [Google Scholar]
- O. DAUBE, 1992, Resolution of the 2D N.S. equation in velocity-vorticity form by means of an influence matrix technic. J. Comp. Phys., 103, 402-414. [MR: 1196846] [Zbl: 0763.76046] [Google Scholar]
- T. DUBOIS, 1993, Simulation numérique d'écoulements homogènes et non homogènes par des méthodes multirésolution. Thèse de l'Université Paris-Sud, Orsay. [Google Scholar]
- H. F. FASEL, 1979, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flow. Approximation methods for Navier-Stokes problem. Proc. Paderborn, Germany, Springer-Verlag, New York, 177-191. [MR: 565996] [Zbl: 0463.76040] [Google Scholar]
- GHIA, GHIA SHIM, 1982, High-Re solutions for incompressible flow using the Navier-Stokes equations and the multigrid method. J. Comp. Phys. 48, 387-411. [Zbl: 0511.76031] [Google Scholar]
- O. GOYON, 1994, Résolution numérique des problèmes stationnaires et évolutifs non linéaires par la méthode des Inconnues Incrémentales. Thèse de l'Université Paris-Sud, Orsay. [Google Scholar]
- M. HAFEZ, M. SOLIMAN, A velocity decomposition method for viscous incompressible flow calculations : Part II 3-D problems. AIAA paper 89-1966, Proceedings 9th CFD Conference, Buffalo, N.Y. [Google Scholar]
- F. JAUBERTEAU, 1990, Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales. Méthode de Galerkin non linéaire. Thèse de l'Université Paris-Sud, Orsay. [Google Scholar]
- M. MARION, R. TEMAM, 1989, Nonlinear Galerkin method, SIAM J. Num. Anal., 26, 1139-1157. [MR: 1014878] [Zbl: 0683.65083] [Google Scholar]
- M. MARION, R. TEMAM, 1990, Nonlinear Galerkin methods: the finite element case, Num. Math., 57, 205-226. [EuDML: 133445] [MR: 1057121] [Zbl: 0702.65081] [Google Scholar]
- M. MARION, J. Xu, 1995, Error estimates for a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Num. Anal., 32, 4, 1170-1184. [MR: 1342288] [Zbl: 0853.65092] [Google Scholar]
- R. PEYRET, T. D. TAYLOR, 1985, Computational Method for Fluid Flow. Springer-Verlag, New York. [MR: 770204] [Zbl: 0717.76003] [Google Scholar]
- J. SHEN, 1987, Résolution numérique des équations de Navier-Stokes par les méthodes spectrales, Thèse de l'Université de Paris-Sud, 1987. [Google Scholar]
- L. SONKE TABUGUIA, 1989, Etude numérique des équations de Navier-Stokes en milieux multiplement connexes, en formulation vitesse-tourbillons, par une approche multi-domaines. Thèse de l'Université Paris-Sud, Orsay. [Google Scholar]
- C. SPEZIALE, 1987, On the advantages of vorticity-velocity formulation of the Equations of fluid dynamics. Journal of computational physics, 73, 476-480. [Zbl: 0632.76049] [Google Scholar]
- T. TACHIM-MEDJO, 1995, Sur les formulations vitesse-vorticité pour les équations de Navier-Stokes en dimension deux. Implémentation des Inconnues Incrémentales oscillantes dans les équations de Navier-Stokes et de Reaction diffusion. Thèse de l'Université Paris-Sud, Orsay. [Google Scholar]
- T. TACHIM-MEDJO, 1995, Vorticity-velocity formulation for the stationary Navier-Stokes equations: the three-dimensional case. Appl. Math. Lett, 8, no. 4, 63-66. [MR: 1340750] [Zbl: 0827.76016] [Google Scholar]
- R. TEMAM, 1990, Inertial manifolds and multigrid method. SIAM J. Math. Anal., 21, no. 1, 145-178. [MR: 1032732] [Zbl: 0715.35039] [Google Scholar]
- R. TEMAM, 1977, Navier-Stokes equations. Theory and numerical analysis. North-Holland publishing comparny, Amsterdam. [MR: 609732] [Zbl: 0426.35003] [Google Scholar]
- R. TEMAM, 1983, Navier-Stokes Equations and Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia. [Zbl: 0522.35002] [MR: 764933] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.