Free Access
Issue
ESAIM: M2AN
Volume 31, Number 7, 1997
Page(s) 891 - 925
DOI https://doi.org/10.1051/m2an/1997310708911
Published online 31 January 2017
  1. I. AGANOVIČ and Z. TUTEK, 1986, A justification of the one-dimensional linear model of elastic beam, Math. Meth. Appl. Sri., 8, p. 1-14. [MR: 870989] [Zbl: 0603.73056] [Google Scholar]
  2. A. BERMUDEZ and J. M. VIAÑO, 1984, Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques, RAIRO, Analyse Numérique, 18,347-376. [EuDML: 193437] [MR: 761673] [Zbl: 0572.73053] [Google Scholar]
  3. M. BERNADOU, S. FAYOLLE and F. LÉNÉ, 1989, Numerical analysis of junctions between plates, Comput. Methods Appl. Pech. Engrg., 74, 307-326. [MR: 1020628] [Zbl: 0687.73068] [Google Scholar]
  4. F. BOURQUIN and P. G. CIARELT, 1989, Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal., 87,392-427. [MR: 1026860] [Zbl: 0699.73010] [Google Scholar]
  5. P. G. CIARLET, 1990, Plates and Junctions in Elastic Multi-Structures. An Asymptotic Analysis RMA 14, Masson, Paris. [MR: 1071376] [Zbl: 0706.73046] [Google Scholar]
  6. P. G. CIARLET and P. DESTUYNDER, 1979, A justification of two-dimensional linear plate model, J. Mécanique, 18,315-344. [MR: 533827] [Zbl: 0415.73072] [Google Scholar]
  7. P. G. CIARLET and S. KESAVAN, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp, Meth. Appl. Mech. Eng., 26, 145-172. [MR: 626720] [Zbl: 0489.73057] [Google Scholar]
  8. P. G. CIARLET, H. L E DRET and R. NZENGWA, 1989, Junctions between three-dimensional and two-dimensional linearly elastic structures, J. Math. Pures Appl., 68, 261-295. [MR: 1025905] [Zbl: 0661.73013] [Google Scholar]
  9. A. CIMETIÈRE, G. GEYMONAT H. LE DRET, A. RAOULT and Z. TUTEK, 1988, Asymptotic theory and analysis for displacement and stress distributions in nonlinear elastic straight slender rods, J. Elasticity, 19, 111-161. [MR: 937626] [Zbl: 0653.73010] [Google Scholar]
  10. S. FAYOLLE, 1987, Sur l'analyse numérique de raccords de poutres et de plaques, Thèse de 3e cycle, Université Pierre et Marie Curie, 1987. [Google Scholar]
  11. G. GEYMONAT, F. KRASUCKI and J. J. MARIGO, 1987, Stress distribution in anisotropic elastic composite beams, in: P.G. Ciarlet and E. Sanchez-Palencia, eds. Applications of Multiple Scalings in Mechanics, RMA 4, Masson, Paris, pp. 118-133. [MR: 901992] [Zbl: 0645.73029] [Google Scholar]
  12. I. GRUAIS, 1993, Modélisation de la jonction entre une poutre et une plaque en élasticité linéarisée, RAIRO Analyse Numérique, 27, 77-105. [EuDML: 193696] [MR: 1204630] [Zbl: 0767.73034] [Google Scholar]
  13. I. GRUAIS, 1993, Modeling of the junction between a plate and a rod in nonlinear elasticity, Asymptotic Anal., 7, 179-194. [MR: 1226973] [Zbl: 0788.73040] [Google Scholar]
  14. N. KERDID, 1993, Comportement asymptotique quand l'épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastrée, en élasticité linéaire, C. R. Acad. Sci. Paris, t. 316, Série I, 755-758. [MR: 1214429] [Zbl: 0773.73047] [Google Scholar]
  15. N. KERDID, 1995, Modélisation des vibrations d'une multi-structure forme de deux poutres, C. R. Acad. Sci. Paris, t. 321, Série I, 1641-1646. [MR: 1367822] [Zbl: 0842.73038] [Google Scholar]
  16. N. KERDID, 1995, Étude de problèmes de jonctions de poutres en élasticité linéaire, Thèse de Doctorat, Université Pierre et Marie Curie. [Google Scholar]
  17. H. LE DRET, 1990, Modeling of folded plate, Comput. Mech, 5, 401-416. [Zbl: 0741.73026] [Google Scholar]
  18. H. LE DRET, 1989, Folded plates revisited, Comput. Mech, 5, 345-365. [Zbl: 0741.73025] [Google Scholar]
  19. H. LE DRET, 1989, Modelling of the junction between two rods, J. Math. Pures Appl., 68,365-397. [MR: 1025910] [Zbl: 0743.73020] [Google Scholar]
  20. H. LE DRET, 1990, Vibration of a folded plate, Modélisation Mathématique et Analyse Numérique, 24, 501-521. [EuDML: 193604] [MR: 1070967] [Zbl: 0712.73044] [Google Scholar]
  21. H. LE DRET, 1994, Elastodynamics for multiplate structures, in: H. Brezis and J. L. Lions eds, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XI, pp. 151-180. [MR: 1268905] [Zbl: 0801.73045] [Google Scholar]
  22. H. LE DRET, 1991, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, RMA 19, Masson, Paris. [MR: 1130395] [Zbl: 0744.73027] [Google Scholar]
  23. V. LODS, Modeling and junction of an eigenvalue problem for a plate inserted in a three-dimensional support, Modélisation Mathématique et Analyse Numérique, to appear. [Zbl: 0866.73031] [Google Scholar]
  24. A. RAOULT, 1992, Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Anal., 6, 73-108. [MR: 1188078] [Zbl: 0777.73033] [Google Scholar]
  25. P. A. RAVIART and J. M. THOMAS, 1983, Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, Paris. [MR: 773854] [Zbl: 0561.65069] [Google Scholar]
  26. J. SANCHEZ-HUBERT and E. SANCHEZ-PALENCIA, 1991, Couplage flexion-torsion-traction dans les poutres anisotropes à section hétérogène, C. R. Acad. Sci. Paris, t. 312, Série, 337-344. [MR: 1108524] [Zbl: 0736.73032] [Google Scholar]
  27. L. TRABUCHO and J. M. VIAÑO, 1987, Derivation of generalized models for linear elastic beams by asymptotic expansion methods, in: P. G. Ciarlet and E. Sanchez-Palencia, eds. Applications of multiple Scalings in Mechanics, RMA 4, Masson, Paris, pp. 302-315. [MR: 902000] [Zbl: 0646.73024] [Google Scholar]
  28. L. TRABUCHO and J. M. VIANO, 1988, A derivation of generalized Saint Venant's torsion theory from three dimensional elasticity by asymptotic expansion methods, Applicable Analysis, 31, 129-148. [MR: 1017507] [Zbl: 0637.73003] [Google Scholar]
  29. L. TRABUCHO and J. M. VIANO, 1990, A new approach of Timoshenko's beam theory by the asymptotic expansion method, Mathematical Modelling and Numerical Analysis, 24, 651-680. [EuDML: 193609] [MR: 1076964] [Zbl: 0777.73028] [Google Scholar]
  30. L. TRABUCHO and J. M. VIANO, 1989, Existence and characterisation of higher order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Anal., 2, 223-255. [MR: 1020349] [Zbl: 0850.73126] [Google Scholar]
  31. L. TRABUCHO and J. M. VIAÑO, 1995, Mathematical Modeling of Rods, in: P. G. Ciarlet and J. L. Lions, eds, Handbook of Numerical Analysis, Vol. IV, North-Holland, Amsterdam, pp. 487-969. [MR: 1422507] [Zbl: 0873.73041] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you