Free Access
Issue |
ESAIM: M2AN
Volume 32, Number 1, 1998
|
|
---|---|---|
Page(s) | 25 - 50 | |
DOI | https://doi.org/10.1051/m2an/1998320100251 | |
Published online | 27 January 2017 |
- [CHO 92] S. J. CHAPMAN, S. D. HOWINSON and J. R. OCKENDON; Macroscopic models for superconductivity; SIAM Review, 34 (1990), 529-560. [MR: 1193011] [Zbl: 0769.73068] [Google Scholar]
- [CH 95] Z. CHEN and K.-F. HOFFMANN; Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity; Adv. Math. Sci. Appl. 5 (1995), 363-389. [MR: 1360996] [Zbl: 0846.65051] [Google Scholar]
- [CHL 93] Z. CHEN, K. H. HOFFMANN and J. LIANG; On a non-stationary Ginzburg-Landau superconductivity model; Math. Meth. Appl. Sci., 16 (1993), 855-875. [MR: 1247887] [Zbl: 0817.35111] [Google Scholar]
- [Du 94] Q. DU; Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity; Applicable Analysis 52 (1994), 1-17. [MR: 1379180] [Zbl: 0843.35019] [Google Scholar]
- [DG 93] Q. DU and M. D. GUNZBURGER; A model for superconducting thin films having variable thickness; to appear. [MR: 1251263] [Zbl: 0794.58049] [Google Scholar]
- [DGP 92] Q. DU, M. D. GUNZBURGER and J. S. PETERSON; Analysis and approximation of the Ginzburg-Landau model of superconductivity; Siam Review, 34 (1992), 54-81. [MR: 1156289] [Zbl: 0787.65091] [Google Scholar]
- [DL 76] G. DUVAUT, J. L. LIONS; Inequalities in Mechanics and Physics; Springer, 1976. [MR: 521262] [Zbl: 0331.35002] [Google Scholar]
- [EMT 93] C. M. ELLIOTT, H. MATANO and Q. TANG; Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity; Eur. J. Appl. Math., Vol. 5, No 7 (1994), 437-448. [MR: 1309733] [Zbl: 0817.35112] [Google Scholar]
- [GE 68] L. P. GOR'KOV, G. M ELIASHBERG; Generalisation of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities; Soviet Phys. J.E.T.P., 27 (1968), 328-334. [Google Scholar]
- [G 85] P. GRISVARD; Elliptic Problems in Nonsmooth Domains; Pitman, 1985. [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
- [GR 86] V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations; Springer-Verlag, 1986. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
- [JT 80] A. JAFFE and C. TAUBES, Vortices and Monopoles; Birkhauser, 1980. [MR: 614447] [Zbl: 0457.53034] [Google Scholar]
- [LT 93] J. LIANG and Q. TANG, Asymptotic behavior of the solutions of an evolutionary Ginzburg-Landau superconductivity model; J. Math. Anal. Appl., Vol. 195 (1995), 92-107. [MR: 1352812] [Zbl: 0845.35118] [Google Scholar]
- [Mo 66] C. B. MORREY, Multiple Integrals in the Calculus of Variations; Springer, 1966. [Zbl: 0142.38701] [Google Scholar]
- [MTY 93] S. MULLER, Q. TANG and B. S. YAN; On a new class of elastic deformations not allowing for cavitations, Ann. Inst. H. Poincaré, Analyse Non Linear, Vol. 11 (1994), 217-243. [EuDML: 78330] [MR: 1267368] [Zbl: 0863.49002] [Google Scholar]
- [Ne 67] J. NECAS, Les Méthodes Directes en Théorie des Equations Elliptique; Masson, 1967. [MR: 227584] [Google Scholar]
- [T 95] Q. TANG, On a evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux; Commun in Partial Differential Equations, 20 (1 and 2) (1995), 1-36. [MR: 1312698] [Zbl: 0833.35132] [Google Scholar]
- [TW 95] Q. TANG and S. WANG, Time dependent Ginzburg-Landau equations of superconductivity, Physica D, Vol. 8 (1995), 139-166. [MR: 1360881] [Zbl: 0900.35371] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.