Free Access
Issue
ESAIM: M2AN
Volume 32, Number 1, 1998
Page(s) 25 - 50
DOI https://doi.org/10.1051/m2an/1998320100251
Published online 27 January 2017
  1. [CHO 92] S. J. CHAPMAN, S. D. HOWINSON and J. R. OCKENDON; Macroscopic models for superconductivity; SIAM Review, 34 (1990), 529-560. [MR: 1193011] [Zbl: 0769.73068]
  2. [CH 95] Z. CHEN and K.-F. HOFFMANN; Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity; Adv. Math. Sci. Appl. 5 (1995), 363-389. [MR: 1360996] [Zbl: 0846.65051]
  3. [CHL 93] Z. CHEN, K. H. HOFFMANN and J. LIANG; On a non-stationary Ginzburg-Landau superconductivity model; Math. Meth. Appl. Sci., 16 (1993), 855-875. [MR: 1247887] [Zbl: 0817.35111]
  4. [Du 94] Q. DU; Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity; Applicable Analysis 52 (1994), 1-17. [MR: 1379180] [Zbl: 0843.35019]
  5. [DG 93] Q. DU and M. D. GUNZBURGER; A model for superconducting thin films having variable thickness; to appear. [MR: 1251263] [Zbl: 0794.58049]
  6. [DGP 92] Q. DU, M. D. GUNZBURGER and J. S. PETERSON; Analysis and approximation of the Ginzburg-Landau model of superconductivity; Siam Review, 34 (1992), 54-81. [MR: 1156289] [Zbl: 0787.65091]
  7. [DL 76] G. DUVAUT, J. L. LIONS; Inequalities in Mechanics and Physics; Springer, 1976. [MR: 521262] [Zbl: 0331.35002]
  8. [EMT 93] C. M. ELLIOTT, H. MATANO and Q. TANG; Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity; Eur. J. Appl. Math., Vol. 5, No 7 (1994), 437-448. [MR: 1309733] [Zbl: 0817.35112]
  9. [GE 68] L. P. GOR'KOV, G. M ELIASHBERG; Generalisation of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities; Soviet Phys. J.E.T.P., 27 (1968), 328-334.
  10. [G 85] P. GRISVARD; Elliptic Problems in Nonsmooth Domains; Pitman, 1985. [MR: 775683] [Zbl: 0695.35060]
  11. [GR 86] V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations; Springer-Verlag, 1986. [MR: 851383] [Zbl: 0585.65077]
  12. [JT 80] A. JAFFE and C. TAUBES, Vortices and Monopoles; Birkhauser, 1980. [MR: 614447] [Zbl: 0457.53034]
  13. [LT 93] J. LIANG and Q. TANG, Asymptotic behavior of the solutions of an evolutionary Ginzburg-Landau superconductivity model; J. Math. Anal. Appl., Vol. 195 (1995), 92-107. [MR: 1352812] [Zbl: 0845.35118]
  14. [Mo 66] C. B. MORREY, Multiple Integrals in the Calculus of Variations; Springer, 1966. [Zbl: 0142.38701]
  15. [MTY 93] S. MULLER, Q. TANG and B. S. YAN; On a new class of elastic deformations not allowing for cavitations, Ann. Inst. H. Poincaré, Analyse Non Linear, Vol. 11 (1994), 217-243. [EuDML: 78330] [MR: 1267368] [Zbl: 0863.49002]
  16. [Ne 67] J. NECAS, Les Méthodes Directes en Théorie des Equations Elliptique; Masson, 1967. [MR: 227584]
  17. [T 95] Q. TANG, On a evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux; Commun in Partial Differential Equations, 20 (1 and 2) (1995), 1-36. [MR: 1312698] [Zbl: 0833.35132]
  18. [TW 95] Q. TANG and S. WANG, Time dependent Ginzburg-Landau equations of superconductivity, Physica D, Vol. 8 (1995), 139-166. [MR: 1360881] [Zbl: 0900.35371]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you